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Abstract

Random fractal signals obtained as fixed points of Iterated Function Systems (IFS) are
good examples of signals which possess discrete scale invariance. In the deterministic case,
the problem of approximating a target signal as a fixed point of an IFS with appropriate
parameters has been widely studied and is known as the inverse problem [FOR]. So far,
the random case has not received much attention and estimating the unknown statictics
of the IFS is the focus of our work. To this end, we consider an orthonormal decomposition
of the random target signal and extend the results in [MEN] to the random case. Then,
we derive the wavelet decompostion of the signal and emphasize the redundancy in the
information carried by the wavelet coefficients. This will be used in the last part where
we derive an empirical estimator of the variance of the unknown random maps of the
IFS in a restrictive case.
1. Definitons

Fractal sets obtained as fixed points of IFS has been widely studied by Barnsley and
Hutchinson in [BAR,HUT]. The idea is to apply a contractive operator T (deterministic
or random) on an element of a complete metric space. By iterating this procedure, the
process converges to a limit point, usually fractal. The existence and uniqueness of the
fixed point (also denoted as the attractor of the IFS) is due to the Banach fixed point
theorem. We are mainly concerned with random operators T acting on the space L2(X)
of compactly supported square integrable functions. A more rigorous definition of this
space is given in the next section. Generally, one defines the operator T in the following
way:

(Tf)(x) =
M∑
i=1

φi[f i(ω−1
i (x)), ω−1

i (x))]1ωi(X)(x) (1.1)

where X is a compact interval of the real line, ωi : X → X partition the interval X
into disjoint subintervals and φi : R × X → R are random operators Lipschitz in their
first variable. Lastly, f i are independent and identically distributed copies of f . Loosely
speaking, this operator realises dilatations, compressions and distorsions of i.i.d. copies
of the random function f ∈ L2(X). The limit function obtained is self-similar up to
probability distribution.
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2. Expansion of Random Functions
Let X denote a compact support. Without loss of generality, we will consider X = [0, 1].
In the remainder, we will only consider compactly supported signals with finite energy.
The space of deterministic square integrable functions is denoted by L2(X). We endow
L2(X) with its usual metric l2(f, g) = (

∫
X |f(t) − g(t)|2dt) 1

2 where f and g are two
elements of L2(X). To deal with random attractors of IFS and their decomposition over
an orthonormal basis, we will need to define new spaces. Let Ω be a sample space. Let
us first start with random square integrable signals:

L2(X) = {f(ω, t), ω ∈ Ω | Eω

[ ∫
X
|f(ω, t)|2dt

]
< +∞} (2.1)

The associated metric is l∗2(f, g) = E
1
2
ω

[
l22(f, g)

]
. Next we define the space D2(N) of

coefficients of deterministic square integrable functions decomposed on an orthonormal
basis. In the remainder of this section, we denote by {ϕn} an orthonormal basis of L2(X).:

D2(N) = {f = (f0, ..., fj , ...) | f(x) =
∑
k≥0

fkϕk(x), f ∈ L2(X)} (2.2)

This space is equipped with the usual metric d2(f ,g) = (
∑
k≥0

|fk − gk|2)
1
2 . Likewise, we

define the space D2(N) which contains the decomposition coefficients of random square
integrable functions decomposed on an orthonormal basis. The distance between 2 ele-
ments of this space is d∗2(f ,g) = E

1
2
ω [d2

2(f
ω,gω)]. Then for any f ∈ L2(X),

f(x) =
∑
k≥0

fkϕk(x) (2.3)

where fk =< f, ϕk >=
∫

X f(x)ϕk(x)dx are random variables, {ϕn} remain deterministic.
Clearly, the random process f induces a distribution on its coefficients fk. The purpose of
this part is to generalise the work of [FOR] in the random setting. The major result is to
show that we can associate with T a contractive operator ϑ acting on the decomposition
coefficients of a random function, converging to a fixed point, which is the vector of
expansion of the fixed point of T . To this end, let f and g be two elements of L2(X) such
that g = Tf . Consider their decomposition over {ϕn}. (g(x) =

∑
k≥0

gkϕk(x)). Clearly:

gk =< g, ϕk >=< Tf, ϕk >=<
M∑
i=1

φi(f (i)(ω−1
i ), ω−1

i )1ωi(X), ϕk >

To go further, we need to set a particular expression for φi. One could think of any
possible expression and one of the simplest ones is given by:

φi(u, v) = siu+ ζi(v) si < 1 (2.4)

where ζi is a non-linear function, leading to a nonlinear transformation of the coefficients
fk. We denote by ϑ the mapping which transforms the coefficients of f into the coefficients
of g after applying T . We have the following result:

Theorem 1. Let
• {ϕn} be an orthonormal basis of L2(X).
• T be the contractive operator of a random IFS and f∗ its fixed point.

Then ϑ is contractive in the complete metric space (D2(N), d∗2) and for any initial con-
dition f0 (random or non random), ϑ◦kf0 → f∗ a.s. as k → +∞ where ϑ◦k is the kth
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iterate of ϑ. Moreover, f∗ is unique in distribution and is the vector of expansion of f∗

in the {ϕn} basis.

The proof is not given here. This theorem shows the correspondance between the 2
spaces L2(X) and D2(N) as illustrated below. What can we deduce from all of this?
Since the operator acting on the decomposition coefficients converges in distribution to
the vector of expansion of the fixed point of the IFS, one can use the statistics of the
coefficients to estimate the statistics of the random IFS. This will be achieved in the
last part. The choice of the orthonormal basis is therefore crucial and is explained in the
following section.

L2(X)

T

��

≡ // D2(N)

ϑ

��
L2(X) ≡ // D2(N)

3. Discrete wavelet decomposition
Though not strictly self similar, the wavelet basis is obtained by translations and di-
latations of a single mother wavelet, like fixed point of IFS. The two constructions have
therefore strong similarities and it is natural to consider wavelet expansion of fractal
functions. The discrete wavelet transform represents a signal in terms of a low-pass scal-
ing function φ00 and a band-pass wavelet function ψ00 which can be derived from φ00. By
considering contractions and dilations of a compactly supported mother wavelet function,
ψij(t) = 2

i
2ψ00(2it − j), the family (ψij)i,j is an L2(X) orthonormal basis. Any signal

with compact support X = [0, 1] can be represented in the following way:

f(t) = b00φ00(t) +
∑
i>0

2i−1∑
j=0

fijψij(t) (3.1)

Without loss of generality, we have considered a decomposition of the signal up to scale
0, reducing the number of scaling coefficients to 1. We now derive the wavelet expansion
for an IFS with two maps but the result can be easily extended to IFS with M maps
using an M -band wavelet transform. We denote by Wf (n,m) the wavelet coefficient of
f at scale n and position m:

Wf (n,m) =
∫

[0,1]

ψnm(t)f(t)dt =
2∑

i=1

∫
ωi([0,1])

2
n
2 ψ(2nt−m)φi[f i(ω−1

i (t)), ω−1
i (t)]dt

Choosing uniform partition maps ωi(t) = t
2 + i−1

2 for i = 1, 2, we get:

Wf (n,m) =
1√
2

2∑
i=1

Wφi

(
n− 1,m− 2n−1(i− 1)

)
where n > 1 (3.2)

where Wφi
(n,m) =

∫
[0,1]

ψnm(t)φi(f(t), t)dt and whenever 2n−1(i− 1) 6 m 6 i2n−1 − 1,
i = 1, 2. This clearly emphasizes the redundancy in the wavelet decomposition of fractal
attractors of IFS: one can recursively compute the wavelet coefficients in terms of the
IFS parameters from coarse to fine scale. When decomposing the signal on a Haar basis,
recursive formulae can be computed in the same way for the coarsest coefficient f00 and
the scaling coefficient b00.
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4. Parameter estimation
The inverse problem in the random case is the following. Suppose we know the deter-
ministic parameters of the IFS (contraction ratio, partition maps...) , the goal is then
to estimate the statistics (for example the moments) of the randomness introduced in
the maps from one or more snapshots of the fixed point. This seems to be impossible
in general cases since we cannot infer anything about a random variable just from one
realisation, but the scenario is quite different here: by exploiting the fractal property of
the fixed point, one has access not to one realisation but to several realisations of the
fixed point. This is what we will be using here, in the wavelet domain. In order to derive
an estimator, we need to set a particular form for φi: φi(u, v) = siu+Xζi(v) where X is
a zero mean Gaussian random variable with variance σ2. The only parameter to estimate
here is the variance of the random variable X. Using (3.2), it is straightforward to derive
recursive expression for the variances of each wavelet coefficient:

Varfi,j =
s21
2

Varfi−1,j +
σ2

2
(ζ1

i−1,j)
2 (4.1)

Varfi,j =
s22
2

Varfi−1,j−2i−1 +
σ2

2
(ζ2

i−1,j−2i−1)2 (4.2)

where ζn
ij is the wavelet coefficient of ζn at scale i and position j. The first equality is

valid if j ∈ [0, 2i−1 − 1] and the second one for j ∈ [2i−1, 2i − 1]. The knowledge of
marginal probability density functions of the wavelet coefficients is not enough to derive
an estimator of the variance as the coefficients are correlated. One can proceed in the
same way as for the variance and using various independencies one can express correlation
of any two wavelet coefficients in terms of the IFS parameters. An important fact is that
the covariance matrix Γ of the wavelet decomposition can be expressed by σ2Υ where σ2

is the random parameter to be estimated. One can use the following empirical estimator
(here equal as the Maximum Likelihood estimator since we are in the Gaussian case) to
estimate the variance of X:

ˆσ2
ML =

1
N

fT Υ−1f (4.3)

where N is the total number of coefficients.

5. Conclusion
We have shown that the wavelet decompostion of the attractor of the IFS acting over the
space of functions possesses redundancy from one scale to another, which is little surprise
considering the similarities between the wavelet and IFS constructions. This redundancy
can be exploited for example to estimate the statistics of random fixed points. It would
be interesting to obtain more general estimators in a more general setting, and to adapt
the results to 2-D images.
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