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Abstract

Blind image restoration is an ill-posed problem where the degree of uncertainty must be
countered by explicit use of prior knowledge. The hierarchical Bayesian paradigm allows
for a robust way to estimate both image, blur, and model parameters in the presence
of uncertainty. We consider a nonstationary image model that aids restorations, and
describe methods available in this framework to perform inference.

1. Introduction
Many images taken with conventional and digital cameras undergo blurring and other
degradations. The rapidly expanding digital photography and camera phone industries
are placing tough demands on improvements in image quality at lower costs; digital image
restoration can help give sharper pictures, and reconstruct blurry images of unique events.

In practice however, the exact nature of the blur in an image is unknown and must be
estimated from the image itself: the blind image restoration (BIR) problem. By mathe-
matically modelling both the image and blur we can obtain probabilistic estimates for
both. Use of a fully stochastic Bayesian approach allows for robust parameter estimates
in the presence of uncertainty. When the degree of uncertainty is great, as in the BIR
problem, it is necessary to impose as much structure as possible representing our prior
beliefs in order to recover the original image and blur. This may be done effectively
with a hierarchical model. Most existing BIR techniques have assumed a stationary im-
age model. However investigations suggest that using a nonstationary model both aids
accurate blur identification, and improves the restored image.

Under this framework several restoration options may be considered; a full review of
BIR methods may be found in Bishop et al. (2007). In the following sections, we outline
the maximum marginalised a posteriori (MMAP) blur identification method, the Markov
chain Monte Carlo (MCMC) approaches , and the Variational Bayesian (VB) approach.

2. Problem Formulation
The BIR problem consists of estimating an unobserved true image, f(i, j), and blur or
point spread function (PSF), h(i, j) from an observed degraded image g(i, j), which is
modelled as a discrete convolution f(i, j) ∗ h(i, j) plus additive white Gaussian noise
(WGN), w(i, j). This may be expressed in matrix-vector form with lexicographically
ordered image vectors and a Block Toeplitz with Toeplitz Blocks (BTTB) PSF matrix
as g = Hf + w. Since w ∼ N (0,Qw), the likelihood of the observations conditioned on
the true image may be written p (g |f ,H,Qw ) = N (g |Hf ,Qw ).
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Figure 1. (a) Model 1: Simplified hierarchical Bayesian network for MMAP approach; (b)
Model 2: Full model for Variational Bayes and Gibbs sampling approaches

In the Bayesian framework we introduce prior models for the unknown parameters,
which in turn depend on hyperparameters. A further stage in the hierarchical Bayesian
framework is to regard the hyperparameters as unknown variables and model our prior
knowledge of their distributions with hyperpriors. This abstraction allows for greater
robustness of estimates when we are less confident in the observations and the hyperpa-
rameters themselves.

Two models will be considered, as shown graphically in Fig. 1. The first (Model 1) is a
simplification of the second (Model 2) in which the true image is marginalised from the
model. The meanings of the various variables and parameters will now be explained.

2.1. Nonstationary Image model

A block-stationary autoregressive (BSAR) model, belonging to the class of Markov ran-
dom field (MRF) models, is used for the true image f . The model segments f into R
blocks or regions. Each region is modelled by a 2D AR process plus a mean. Defining the
vector of lexicographically ordered AR coefficients in each region as aK = vec{aK(k, l)},
the stacked vector of aK ’s as a, the image model may then be written as

f = µ + A(f − µ) + v = µ + (F −M)a + v, (2.1)

where v is a WGN excitation signal v ∼ N (0,Qv), µ is a vector of block means, M
is a block-diagonal mean matrix, F is a data matrix and A is similar in form to H
but non-stationary. Thus the probability density function (PDF) of f may be written as
p (f |a,Qv,µ ) = N (f |µ,Σf ) where Σf = E[ffT ] = (I−A)−1Qv(I−A)−T . A causal
image model (lower triangular A) is used such that the Jacobian det |I −A| is unity.

2.2. Prior blur models

In Model 2, the prior used for the PSF is a Gaussian smoothness prior, of a similar type to
that for the image, but with a stationary covariance described by the discrete Laplacian
operator C, i.e. p (h | δh ) = N

(
h

∣∣ 0, (δhCT C)−1
)
, where δh controls the strength of the

prior. The choice of prior for the blur in Model 1 depends upon its parameterisation,
however for the MMAP method described, a flat prior has been used for simplicity.
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2.3. Hyperprior models
To remove dependance on exact specification of the prior models, whose hyperparameters
are in practice unknown, the hyperpriors may be specified. A standard way to do this,
resulting in more tractable solutions, is to use conjugate priors.

For the AR parameter vector, a Gaussian p (a | δa ) =
∏R

K=1 N
(
aK

∣∣ 0, δ−1
a I

)
is used.

A flat prior is used for the regional means, µ, as they are readily obtained from f . For
the other hyperparameters, which are all (inverse) variances of Gaussian distributions,
the standard conjugate priors are (inverse) Gamma distributions; thus we have:

p (δa) = G (δa |αa, βa ) p (δh) = G (δh |αh, βh )

p (Qv) =
R∏

K=1

IG
(
σ2

vK
|αvK

, βvK

)
p (Qw) = IG

(
σ2

w |αw, βw

)
where σ2

vK
and σ2

w are the variances of each block of v and of w respectively.

3. MMAP solution
The MMAP solution found using Model 1 has been investigated in Bishop & Hopgood
(2006), and the approach is summarised here. In Model 1, we consider firstly marginal-
ising f from the full likelihood, giving p (g |a,h,Qv,Qw,µ ) = N (g |Hµ,Σg ), where
Σg = H(I −A)−1Qv(I −A)−T HT + Qw. This result may also be found by combining
p (f |a,Qv,µ ) with p (w) under the original observation equation g = Hf + w.

However in order to find the MMAP estimate, it is also necessary to approximate Σg by
omitting Qw. This amounts to using an inverse filter estimate f̂ = H−1g in the MMAP
formulae. Note that in practice at this stage we also remove the block-based sample
mean from f̂ and F̂ , thus removing the dependance on µ. The posterior is then found as
p (h,a,Qv | g ) ∝ p (g |h,a,Qv ) p (h) p (a |Qv ) p (Qv). The nuisance parameters a and
Qv may now be marginalised out to give the marginalised posterior expression:

p(h|g) =
∫

· · ·
∫

p(h,a,Qv|g) da · dQv. (3.1)

The resulting analytic expression (found with standard Gamma and Gaussian inte-
grals) may then be maximised numerically to obtain the MMAP estimate. The key
advantage of the MMAP approach is in reduction of the parameter search space to a
manageable size; however there are clearly some approximations that have been made
from the full model in order to obtain an analytic solution to (3.1).

It is the presence of the det |H| term in the marginalised posterior though that causes
the most difficulties when trying to use a non-causal blur model, which will more ac-
curately model a real blur. The problem arises because H is in fact often singular, or
at best badly conditioned — the omission of Qw has removed the regularising effect
in the determinant. Furthermore, the determinant is highly sensitive to the boundary
conditions used in the model, which are the subject of further investigation.

4. MCMC approaches
MCMC procedures are another method available under the Bayesian framework to es-
timate the unknown parameters, by drawing samples from the posterior distribution.
They can in theory provide solutions to arbitrarily difficult problems. In the causal blur
case, a Gibbs sampler may be applied to the posterior of Model 1, p (h,a,Qv | g ), to
simultaneously estimate the blur and other parameters; this approach is analogous to
that used in the 1D case in Hopgood & Rayner (2003). However this does not get around
the difficulty of the Jacobian det |H| that is present under a non-causal blur model.



Bayesian Approaches for Blind Restoration of Nonstationary Images 4

To sample the posterior distribution including the Jacobian would require using a
Metropolis-Hastings step to sample from the conditional p (h |a,Qv, g ), since it is a
non-standard distribution in h. However the proposal distribution would have to model
the effect of the Jacobian, and finding such a distribution that doesn’t lead to samples
being continuously rejected is no simple task. This Jacobian term actually results due to
the marginalisation of f from the model; as such it may be simpler to consider the full
model in Model 2.

Under Model 2, the Gibbs sampler may be run even with a non-causal blur. Sampling
for f is now included, resulting in a stochastic image restoration step, and an equivalent
blur estimate conditional on f , now independent of det |H|. All the required conditionals,
namely p (h |f ,Qw, δh, g ), p (f |h,a,Qv,Qw,µ, g ), p (Qw |f ,h, g ), p (a |f ,µ,Qv, δa ),
p (µ |f ,a,Qv ), p (Qv |f ,a,µ, {αK}, {βK} ), p (δh |h, αh, βh ), and p (δa |a, αa, βa ) may
be found in terms of standard distributions and hence sampled. The only remaining
problem is the computational complexity of sampling for f .

5. Variational Bayesian approach
The VB approach is a fairly new alternative to using MCMC; rather than sampling,
we approximate the intractable posterior distribution by a separable function, hoping
to achieve a good compromise between accuracy and speed. It may also be seen as
a fully stochastic version of the expectation maximisation (EM) algorithm, where the
distributions of all the parameters and hidden variables are estimated rather than just
using point estimates for the parameters.

Molina et al. (2006) recently applied the VB algorithm to the BIR problem. The
model used therein is the same as that of Model 2, except a simpler stationary Gaussian
prior (of the same type described in §2.2) is used for the image model. The stationary
models allow for rapid calculations in the discrete frequency domain. We are currently
working on extending this to the nonstationary image prior shown in Model 2, to improve
the restorations and estimates. This requires finding efficient and accurate solutions in
the spatial domain, taking account of boundary effects. The connection to the Gibbs
sampling approach is interesting; at each iteration rather than sampling, expectations
and moments are found of the same conditional distributions as those mentioned above.

6. Conclusions
Two different hierarchical models, and three Bayesian approaches for estimating their
parameters for BIR have been discussed. Each has its relative merits in terms of com-
plexity and accuracy. The nonstationary model has been shown to aid blur identification
in the MMAP case, and is currently being applied to the other two cases.
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