
1

Computing the SVD of a quaternion matrix
By Stephen J. Sangwine∗

Department of Electronic Systems Engineering, University of Essex, UK
AND Nicolas Le Bihan

Laboratoire des Images et des Signaux, INPG Grenoble, France

Abstract

The practical and accurate computation of the singular value decomposition of a quaternion
matrix is of importance in vector signal processing using quaternions. We present a Jacobi algo-
rithm for computing such an SVD, and discuss its utility and accuracy. The algorithm is included
in an open-source Matlab toolbox for quaternions where it serves as an accurate reference imple-
mentation.

1. Introduction
The singular value decomposition (SVD) is usually represented as A = U6V† where A is an
arbitrary matrix (not necessarily square), U and V are unitary matrices (U†U = I), 6 is a diagonal
matrix of real singular values, and † denotes a conjugate transpose (using a quaternion conjugate
in the case of a quaternion matrix, and a complex conjugate in the case of a complex matrix).
The singular values are unique, but the columns of U and V (the singular vectors) are not. It is
usual when computing the decomposition to sort the singular values (and the associated singular
vectors) into order so that the largest singular values are stored in the first few rows of 6.

A can be reconstructed using all the singular values, or by using a subset (usually from among
the largest singular values):

A = U61V†
+ U62V†

+ . . . U6N V†

where 6i denotes a diagonal matrix with only one non-zero element in the i th diagonal position
(a singular value).

2. Motivation for computing the quaternion SVD
At a simple level, the SVD can be used to extract components of a matrix with significant singular
values. This has been exploited generally in what is known as reduced rank signal processing
(Scharf 1991) where the idea is to extract, in some sense, the significant parts of a signal. More
generally, the SVD is a tool that can be used as part of a signal processing algorithm as for
example in (Le Bihan and Mars 2004), where the SVD is used to extract significant signals from
noise with particular application to seismic signals captured by vector geophones, or in (Miron
et al. 2006) where the SVD of a quaternion matrix is used as part of a quaternion version of the
MUSIC algorithm for direction of arrival estimation using a vector sensor array.

Computing the SVD using a Jacobi algorithm promises more accurate results than any other
known algorithm, and therefore a quaternion Jacobi algorithm is useful as a reference implemen-

∗ The work presented in this paper was supported by the UK Engineering and Physical Sciences Re-
search Council (Grant number GR/S16881/01); and by the Centre National de la Recherche Scientifique
and the Royal Academy of Engineering, UK.

Computing the SVD of a quaternion matrix 2

tation. The full details of the algorithm are given in Le Bihan and Sangwine (2006) which was
based on a compiled code implementation as well as an early coding in more or less raw Matlab
code. In this paper we present a simplified explanation of the algorithm, and discuss an open
source Matlab implementation which we have released, to coincide with this paper, as part of a
quaternion toolbox for Matlab which we developed and published last year (Sangwine and Le
Bihan 2005).

We have also implemented and published a much faster method for computing the quaternion
SVD based on bidiagonalisation to a real or complex bidiagonal matrix using Householder trans-
formations. This algorithm is less accurate than the Jacobi algorithm (Sangwine and Le Bihan
2006) but its speed is a significant advantage for larger matrices and therefore it is this algorithm
that is used as the default quaternion SVD algorithm in our toolbox.

3. Review of the Jacobi algorithm
The Jacobi algorithm is a classical iterative algorithm for computing the SVD (Golub and van
Loan 1996). It computes the singular values more accurately than any other known algorithm.

Given a matrix A the algorithm works by diagonalising an implicit Hermitian matrix B =

A†A. The algorithm nulls one pair of off-diagonal elements of B at a time, and it can therefore
be described in terms of operations on 2 × 2 matrices composed from elements of B taken from
the i th and j th rows and columns:

b =

[
bi i bi j
b j i b j j

]
Here the two off-diagonal elements are quaternion conjugates, and the on-diagonal elements are
real (because B is Hermitian). The off-diagonal elements are nulled by unitary transformations
known as Jacobi rotations, which take the following form:

� =

[
c −s
s c

]
where the overbar denotes a quaternion conjugate. The product �†b� = r where r is real and

takes the form
[

ri i 0
0 r j j

]
. c and s are computed using essentially the same algorithm as in the

complex case described in Forsythe and Henrici (1960) (this is because the implicit matrix B is
Hermitian and therefore the 2 × 2 matrices b are isomorphic to a complex Hermitian matrix):

τ =
(b j j − bi i)

2|bi j |
, t =

sign τ

|τ | +
√

1 + τ 2
, c =

1
√

1 + t2
, s = bi j

tc
|bi j |

The full details are given in Le Bihan and Sangwine (2006).
Diagonalization of B is achieved by iteratively processing upper diagonal elements, and for

each one computing a Jacobi rotation matrix �. This matrix is used to modify two columns of A,
which is equivalent to nulling the off-diagonal elements of B used to compute the rotation matrix
�. A converges towards U6. V is accumulated from the product of the Jacobi rotation matrices.
The iterative process is stopped when the implicit matrix B is sufficiently close to diagonal. In
practice this requires a little less than 10 iterations over the upper diagonal part of B.

There are various schemes for iterating over the upper triangular part of B. The simplest to
implement is called cyclic sweep. All the elements of the upper triangular part are processed in
turn, and at the end of each pass over all such elements, the off-diagonal sum is recomputed, and
the algorithm is stopped if this is small enough.

Implementation 3

4. Implementation of the quaternion Jacobi SVD algorithm
Our most recent implementation of the Jacobi SVD algorithm is based on an open-source Mat-
lab toolbox for quaternions which we developed in 2005 (Sangwine and Le Bihan 2005) which
overloads a large number of fundamental Matlab operations and functions for quaternion ma-
trices including the colon operator and similar for indexing, as well as arithmetic operators and
matrix functions such as sum and mean. The toolbox defines a class for quaternions (in fact
quaternion matrices, since all objects in Matlab are matrices and quaternions are no exception).
The internal representation of a quaternion is, not surprisingly, a structure with four components,
one for each of the W, X, Y and Z components of the quaternion (matrix). Normally, each of
these matrices is of type double. Quaternions with complex components are handled quite natu-
rally by the toolbox, since Matlab permits double matrices to take complex values. The toolbox
overloads many Matlab functions for quaternion matrices, but most importantly, it also over-
loads the colon operator and the various forms of brackets which permit indexing of matrices.
This means that normal Matlab notation can be used with quaternion matrices. In this way, we
can now write Matlab code which will work unchanged on double, complex and quaternion ma-
trices, and indeed, our Jacobi SVD implementation is able to compute the SVD of real, complex
and quaternion matrices using the same code. In order to make this possible we have used one
or two ‘tricks’, one of which will be explained here to show that the coding is not difficult. In
our implementation of the Jacobi SVD algorithm, the output matrix V must be initialised to an
identity matrix since the rotations will be accumulated by multiplication. In order for the code to
work with real, complex and quaternion matrices, V must be initialized to a double or quaternion
identity matrix as appropriate. The following two lines of code achieve this:

F = str2func(class(A)); % F is a function handle.
V = F(eye(N));

The first line is standard Matlab code, and it creates a function handle with the name of the
data type of the input matrix A. This function handle will be either double or quaternion.
(If A is complex, F will still be double.) The second line, in effect, now reads either V =
double(eye(N)); or V = quaternion(eye(N)); depending on the type of A. In the
first case, since the eye function returns a double matrix, calling double has no effect, and
V is initialised to be a double identity matrix, as required. In the second case, the eye function
creates a double identity matrix of size N , and the quaternion constructor function converts this
to a quaternion matrix (the imaginary parts are all zero of course). This is because the quaternion
constructor function has been defined so that, if given a single argument which is not a quater-
nion matrix, it will create a quaternion matrix, and supply zero matrices for the three imaginary
components. Therefore, in this second case, V is initialised to be a quaternion matrix, with the
scalar (W) part an identity matrix, and the vector parts, zero matrices.

We believe this ability to write code that will work for all three cases can be exploited in signal
processing algorithms, where the ability to generalize from complex code could be a useful test
feature.

5. Some numerical results and comparisons
We present here some numerical results obtained using our Matlab implementation on random
matrices. We compare the Jacobi algorithm on real and complex matrices against the standard
Matlab implementation of the SVD (which uses LAPACK), and we compare the Jacobi algorithm
on a quaternion matrix against the default quaternion algorithm in our toolbox, which is based on

Computing the SVD of a quaternion matrix 4

Real Real Complex Complex Quaternion Quaternion
Maximum Mean Maximum Mean Maximum Mean

Matlab SVD 2.3 × 10−14 3.9 × 10−15 1.5 × 10−14 4.2 × 10−15

QTFM SVD 2.2 × 10−14 7.4 × 10−15

Jacobi SVD 8.0 × 10−15 3.8 × 10−15 1.1 × 10−14 4.2 × 10−15 1.2 × 10−14 5.6 × 10−15

TABLE 1. Numerical results. (Each entry gives the maximum and mean errors over 50 tests.)

diagonalization to a real matrix, and the Matlab SVD of the real matrix (Sangwine and Le Bihan
2006).

The random matrices tested were created with the Matlab randn function. In the case of
complex matrices, this function is used to construct the real and imaginary matrices, and the case
of quaternion matrices, it is used to construct all four quaternion components.

Table 1 shows the errors between the original matrix and a reconstruction computed from the
singular value decomposition computed as follows, where A is the original random matrix and
B = U6V† is computed from the results of the decomposition: E = abs(A − B). For each test
matrix, the element of E with the largest modulus is found, and the results in the table are the
maximum and mean values found across 50 tests. The test matrices were 8 × 8.

6. Conclusions
The direct implementation of the Jacobi algorithm for the SVD has been a useful step to take
because it provides an accurate reference implementation for verifying other algorithms.

Although the Jacobi SVD algorithm itself is not difficult to code, its implementation was made
a lot easier by the existence of our quaternion toolbox which now eliminates the need to consider
many low-level programming issues and permits the development of quaternion algorithms using
the same high-level abstractions as can be employed when coding real and complex algorithms.

REFERENCES

G. E. Forsythe and P. Henrici. The cyclic Jacobi method for computing the principal values of a complex
matrix. Transactions of the American Mathematical Society, 94(1):1–23, January 1960.

Gene H. Golub and Charles F. van Loan. Matrix Computations. Johns Hopkins studies in the Mathematical
Sciences. The Johns Hopkins University Press, Baltimore and London, third edition, 1996. ISBN
0-8018-5413-X and 0-8018-5414-8 (pbk.).

N. Le Bihan and J. Mars. Singular value decomposition of quaternion matrices: A new tool for vector-sensor
signal processing. Signal Processing, 84(7):1177–1199, 2004.

N. Le Bihan and S. J. Sangwine. Jacobi method for quaternion matrix singular value decomposition. Applied
Mathematics and Computation, 2006. doi: 10.1016/j.amc.2006.09.055. Available online 20 October.

S. Miron, N. Le Bihan, and J. I. Mars. Quaternion-MUSIC for vector-sensor array processing. IEEE
Transactions on Signal Processing, 54(4):1218–1229, April 2006.

S. J. Sangwine and N. Le Bihan. Quaternion singular value decomposition based on bidiagonalization to
a real or complex matrix using quaternion householder transformations. Applied Mathematics and
Computation, 182(1):727–738, 1 November 2006. doi: 10.1016/j.amc.2006.04.032.

S. J. Sangwine and N. Le Bihan. Quaternion Toolbox for Matlab R©, 2005. URL
http://qtfm.sourceforge.net/. Software library, licensed under the GNU General Pub-
lic License.

Louis L. Scharf. The SVD and reduced rank signal processing. Signal Processing, 25(2):113–133, Novem-
ber 1991. doi: 10.1016/0165-1684(91)90058-Q.

