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Abstract

A novel approach to image super-resolution is described in this paper. By modeling
our image acquisition system with a Spline sampling kernel, we are able to retrieve from
the samples some statistical information about the observed continuous scene before its
acquisition (irradiance light-field). This information, called continuous moments, allows
to register exactly a set of low-resolution images and to ultimately generate a super-
resolved image. The novelty of the proposed algorithm resides in its ability to operate
entirely on low-resolution images and to enhance the resolution of the entire field of view
with a relatively low computational complexity. We ran experiments with real acquired
images and obtained super-resolved images with a good level of details although some
ringing effects are also noticeable.

1. Introduction

An image super-resolution algorithm aims at creating a single detailed image called
super-resolved image (SR) from a set of low-resolution images (LR) taken from different
unknown locations and observing the same scene of interest. It is often assumed that
the disparity between any two LR images can be described by a parametric form (e.g.
an affine transform) that needs to be estimated in the image registration step. Most
registration algorithms start by detecting a large number of features (e.g. corners) in the
LR images and then find their correspondences among the LR images. Thus a subpixel
accuracy can be obtained in the estimation of the registration parameters once a sufficient
set of feature correspondences has been correctly established.

The second step of super-resolution is called image fusion and consists in calculating
the SR image from the registered data as well as restoring it from any blur or noise
introduced by the acquisition system. When less pixels from the set of LR images are
available than in the SR image, fusion can be expressed as a linear system whose matrix
obtained from the registration step is underdetermined and ill-conditioned. Any noise
and/or errors in the linear system make the search for a suitable solution increasingly
difficult. The use of regularization methods to circumvent this problem implies that a
smoothened SR image is retrieved whose certain details may be lost and where ringing
effects may occur.

The accuracy of image registration is thus critical to get a SR image of good quality.
Many super-resolution algorithms need input LR images with a fairly good resolution in
order to have successful features extraction and correspondences steps. Then, for memory
requirements, a small region of interest (ROI), e.g. 64 x 64px, is selected and its resolution
enhanced by the desired magnification factor. In our proposed approach, we consider
input LR images whose size is similar to the ROI previously mentioned.

In this research, new results from the sampling theory of signals with finite rate of
innovation (FRI) (see Dragotti et al 2006) are extended to application for real images.
Combined to the theory of B-Spline processing, we are able to register LR images with
a greater accuracy and apply this method to a new image super-resolution algorithm.
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2. Shift-invariant Spline space

Let V (ϕ) be the following shift-invariant function space generated by the function ϕ:

V (ϕ) :

{
gV (x) =

∞∑

k=−∞

p[k]ϕ(x − k) : p ∈ l2
}

The integer shifts of ϕ form a basis of V (ϕ) and p[k] are the coordinates of gV (x) in this
basis. V (ϕ) is a closed-subspace of L2 when ϕ is a Riesz basis (Aldroubi & Unser 1994):

A‖p‖2
l2 ≤

∥∥∥∥
∞∑

k=−∞

p[k]ϕ(x − k)

∥∥∥∥
2

≤ B‖p‖2
l2 , B > A > 0.

Let g(x) ∈ L2, its least-square approximation ĝ(x) in V (ϕ) is its orthogonal projection
onto V (ϕ):

ĝ(x) =

∞∑

k=−∞

p[k]ϕ(x − k) where p[k] = 〈g(τ), ϕ̃(k − τ)〉

The function ϕ̃ is the dual basis of ϕ and satisfies:〈ϕ(x − i), ϕ̃(x − j)〉 = δij , i, j ∈ Z.
A Spline γρ(x) is a piecewise polynomial curve of degree ρ whose pieces are smoothly

connected together at equidistant joining points called knots. A fundamental result from
Schoenberg (1946) shows that any Spline γρ(x) can be characterized by a unique ex-
pansion with a B-Spline basis denoted βρ(x). Thus the function βρ(x) generates a shift-
invariant Spline space V (βρ). B-Spline functions are obtained from successive convolution
of the box B-Spline β0(x):

βρ(x) = β0(x) ∗ β0(x) ∗ . . . ∗ β0(x)︸ ︷︷ ︸
ρ + 1 times

where β0(x) =





1, − 1
2 < x < 1

2
1
2 , |x| = 1

2
0, otherwise

B-Splines have many interesting properties. In particular, they have a compact support,
form a Riesz Basis and satisfy also Strang-Fix conditions (Strang & Fix 1994):

βρ(x) ⇔ Bρ(f) = [sinc(f)]ρ+1 →

{
Bρ(0) 6= 0
DjBρ(2πk) = 0, k ∈ Z, j = 0, 1, . . . , ρ.

where Bρ(f) is the Fourier transform of βρ(x) and Dj is the differential operator. These
conditions ensure that a linear combination of B-Splines can reproduce polynomials.
Interestingly, any Spline function also satisfy Strang-Fix conditions. Discrete B-Splines
are defined as:

bρ(k) = βρ(x)
∣∣
x=k

A dual Spline function γ̃n(x) corresponds to any Spline function γρ(x) (Unser et al 1993):

γρ(x) =

∞∑

k=−∞

p[k] · βρ(x − k)

γ̃ρ(x) =

∞∑

k=−∞

(p ∗ b2ρ+1)−1[k] · βρ(x − k)

3. B-Spline sampling kernels and continuous moments

In our camera model, the incoming irradiance light-field f(x, y) of the observed scene
is blurred and sampled by a sampling kernel γρ(x, y) which models the point-spread
function (PSF) of the camera lens and the sensor on the image plane. The PSF γρ(x, y)
is supposed to be known and to be a Spline function of compact support. The obtained
samples Sm,n are the pixels of the acquired image:
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Sm,n = 〈f (x, y) , γρ (x/T − mT, y/T − nT )〉 with x, y ∈ R, m, n ∈ Z.

Mathematically, the samples Sm,n are the coordinates of f(x, y) in the shift-invariant
Spline space with respect to the dual Spline basis γ̃ρ(x, y). Since γρ(x, y) satisfies Strang-

Fix conditions, there exists a set of coefficients
{

c
(p,q)
m,n

}
such that:

∑

m∈Z

∑

n∈Z

c(p,q)
m,n γρ (x − m, y − n) = xpyq, where c(p,q)

m,n = 〈xpyq, γ̃ρ(x − m, y − n)〉

where p, q = 0, . . . , ρ − 1 and T = 1 for clarity. The knowledge of these particular
coefficients allows us to retrieve exactly the geometric moments mp,q of the irradiance
light-field f(x, y) from a simple linear combination of the samples:

mp,q =

∫ ∫
f (x, y)xpyqdxdy

=

∫ ∫
f (x, y)

∑

m

∑

n

c(p,q)
m,n γρ (x − m, y − n) dxdy

=
∑

m

∑

n

c(p,q)
m,n

∫ ∫
f (x, y) γρ (x − m, y − n) dxdy

=
∑

m

∑

n

c(p,q)
m,n Sm,n

These moments are called continuous moments to distinguish them from the discrete
moments m̂p,q =

∑
m

∑
n Sm,n(mT )p(nT )q which only approximate the true moments

of f(x, y). The main benefit comes when one considers images of low-resolution. As the
resolution decreases, the continuous moments remain exact whereas discrete moments
diverge rapidly (see also Baboulaz & Dragotti 2006). The required minimum number of
samples is related to the size of the support of γρ(x, y). From the geometric continuous
moments, it then becomes possible to compute a whole variety of other continuous mo-
ments like central or complex moments using adequate linear combinations. In the next
section, γρ(x, y) is chosen to be a cubic B-Spline β3(x, y) (i.e. p[k] = δ[k]). This is a
reasonable choice as the PSF of the lens is often modeled by a Gaussian pulse which is
very similar to a cubic B-Spline. The PSF of the sensor is assumed to be a box function.

4. Image super-resolution

The disparity between any two images g1 and g2 is assumed to be a global affine transform
which consists of a 2 x 2 matrix A and one vector of translation t. It is straightforward
to retrieve t by difference of the barycenters calculated from the continuous moments.
To find the matrix A, we use the method described by Heikkilä (2004). Let Fi be the
Cholesky decomposition of the covariance matrix of gi:

Fi =




√
µ

(i)
2,0 0

µ
(i)
1,1√
µ

(i)
2,0

√
µ

(i)
0,2 −

µ
(i)2
1,1

µ
(i)
2,0




where µ
(i)
p,q denotes the central moments. It can be shown that A can be written as

A = F2 ·R ·F−1
1 where R is a matrix of rotation. By applying a whitening transform to

each image ḡi = F−1
i (gi − E{gi}), the affine disparity between g1 and g2 reduces to a

rotational disparity with matrix R between ḡ1 and ḡ2 (Sprinzak & Werman 1994). The
rotation angle α can then be retrieved by looking at the complex moments of ḡ1 and ḡ2

since:
κ̄(1)

p,q = ej(p−q)α · κ̄(2)
p,q
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Figure 1. Image super-resolution with 40 cameras. (a) Original image 512x512px (left) - (b)
LR image 64x64px (middle) - (c) SR image 512x512px (right)

In Heikkilä (2004), the complex moments κ̄
(i)
p,q have been expressed in function of the

central moments µ
(i)
p,q. It is thus possible in theory to register exactly images that are

related by an affine transform using continuous moments.
The chosen image fusion procedure is simple: after registration of the LR images, the

data on the grid of the HR image is estimated by a 2-D interpolation; the obtained image
is then restored using a Wiener filter.

Figure 1 shows results of an image super-resolution experiment. 40 images of the same
scene (a tiger plush) have been acquired from different locations (random horizontal and
vertical translations) using a digital camera. Figure 1(a) shows the ground-truth image
of reference (512 x 512 px). Each image has been downsampled and blurred to 64 x 64 px
with a cubic B-Spline sampling kernel to create the set of LR images (see Figure 1(b)).
Finally, Figure 1(c) shows the reconstructed SR image with our algorithm (512 x 512 px,
PSNR = 24.2dB). It is worth noticing that the system is underdetermined, i.e. there are
less pixels in the set of LR images than in the SR image (ratio is ∼ 62.5%).

5. Conclusion

We have presented in this paper an image super-resolution algorithm based on the results
of the theory of FRI signals and the theory of B-Spline processing. We use the notion
of continuous moments to accurately register images. In future works, we would like to
estimate reconstruction quality bounds from noisy samples.
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