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Abstract 
This paper discusses a method for performing independent component analysis exploiting 
Gaussian mixture models (GMMs).  Previously most techniques that combine these methods 
have used GMMs to model the source signals.  This paper considers a parsimonious method 
for modelling the observed signals.  The GMM is fitted to the observed data using a modified 
version of the expectation maximisation algorithm. 

1. Introduction 
Independent Component Analysis (ICA) is one method of blind source separation.  A set of 
observed signals is generated through a mixing process applied to the source signals.  The goal 
of ICA algorithms is to reconstruct the source signals based only on the observed signals, i.e. 
without detailed knowledge of the mixing process.  This is evidently an ill-posed problem and 
to render it tractable some additional information is required (e.g. Roberts 2001a).  In this 
particular paper we shall concentrate on the linear, instantaneous mixing problem, and exploit 
an assumption of independence of the source signals, specifically we assume 

 =X AS  (1.1) 

The P×N matrix of observed signals is denoted X, where N is the number of samples in each 
of the channels of the observation and P is the number of observations.  Similarly S is the  
Q×N matrix of source signals, where Q is number of sources.  A is the P×Q mixing matrix.  In 
this paper we specifically restrict our attention to the “square” case where P=Q=D.   

Gaussian mixture models (GMMs), and other mixture models, have been applied to ICA in 
various guises (Choudrey, 2002; Miskin, 2000; Roberts 2001b; Todros 2004).  ICA relies on 
the source signals being non-Gaussian; hence the ability of GMMs to model a wide range of 
probability density functions (pdfs) makes them an enticing tool with which to attempt ICA. 

Previous work has primarily considered the use of GMMs to model the source signals, the 
parameters of this model, along with the unknown mixing matrix, are then optimised to best 
explain the observed data (e.g. Choudrey, 2002; Miskin, 2000; Roberts 2001b).  Modelling the 
sources using a GMM is simplified because of their assumed independence, which means that 
the GMM can be constructed without the need to accommodate cross-correlations between 
sources.  An alternative philosophy, which is closer to the methodology described herein, was 
proposed in (Todros 2004).  In this approach the GMM is fitted to the observed data, rather 
than the sources.  This ICA algorithm proceeds by attempting to find the rotation matrix that 
approximately diagonalises all of the correlation matrices resulting from the GMM.  Such a 
model, as we shall demonstrate, lacks parsimony, since it fails to capture the independence of 
the sources and relies on the approximate joint diagonalisation to impose this a posteriori. 

This paper considers the construction of an ICA algorithm in which a GMM is applied to 
the observed signals using a parsominious model.  Section 2 describes the algorithm and the 
principles underlying it, section 3 presents some results of applying the algorithm to synthetic 
data and conclusions are drawn in section 4. 
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2. Algorithmic details 
Throughout the following we shall assume that the observed signals have been pre-processed 
using Principle Component Analysis (PCA), i.e. the data has been decorrelated, a process 
sometimes refered to as sphering, which is common practice in ICA (Robert 2001a).  The 
solution to the ICA problem is obtained by identifying a rotation (unitary) matrix which 
renders the estimated source signals independent, as measured via some metric. 

The observed signals have a particular structure as a result of the generative model (1.1) and 
the assumed independence of the sources.  In particular one can show (Becker 2006) that a 
GMM of the (independent) source signals should satify the following properties. 

1) The centres (means) in the GMM lie on a rectangular grid. 
2) The correlation matrices of the components in the GMM are diagonal. 
These properties translate to equivalent properties of the observed signals.  The first 

property means that the centres of a GMM modelling the observations should lie on a rotated 
grid.  The second property ensures that the GMM of the observations should consist of 
components whose correlation matrices share common eigenvectors, i.e. have the form 

 t
k kC U U= Λ  (2.1) 

where Λk is the diagonal eigenvalue matrix for the kth component in the GMM, U is the matrix 
of eigenvectors and t denotes transposition. 

Property 1) can be used to generate an efficient method for ICA, but the method is only 
effective when the components of the GMMs are well separated.  This is a significant 
limitation which makes the algorithm only suitable for a very limited range of applications. 

This paper concentrates on methods that explicitly exploit property 2).  The corresponding 
GMM leads to a model for the pdf of the observations, p(x), of the form 
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where pk are the label probabilities, µk are the vectors of means (centres) for the GMM and K 
is the number of components in the GMM.  We refer to this model as an aligned GMM. 

The matrix of eigenvectors represents the rotation matrix that is required to perform ICA, so 
by fitting an align GMM one essentially solves the ICA problem.  The aligned GMM can be 
fitted to the observed data using a modification of the familiar Expectation Maximisation 
(EM) algorithm (Bilmes, 1998). 

The modified EM algorithm is implemented by iterating the following equations over i: 
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where [,] denotes the Lie bracket, Θi is the set of GMM parameters and ( )| , i
np k Θx  denotes 

the probability of measured signals being generated by the kth component of the GMM with 
parameters Θi. 

The algorithm described by (2.3) shares much in common with the classical EM algorithm 
for GMMs (Bilmes, 1998).  The primary difference is that the correlation matrices are updated 
by updating a common eigenvector matrix and individual eigenvalues.  The update for the 
matrix U, equation (2.3c), needs to take into account the fact that this matrix must be 
orthogonal.  In fact we are seeking solutions on the Stiefel manifold.  In general, the 
implementation of (2.3) is not trivial, in particular, the solution of (2.3c) requires some care.  
Equation (2.3c) derives from the maximisation step of the EM algorithm and one has to ensure 
that the solution found does indeed represent a maximum, as opposed to a minimum.  One 
approach to approximating the solution (2.3c) is update U as the eigenvector matrix associated 
with the matrix  
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In the case where all of the component matrices , 1i i
k
+K  share a common set of eigenvectors, 

which in turn will the eigenvectors of K%, then that eigenvector matrix provides an exact 
solution to (2.3c).  Adoption of this approximation robs the EM algorithm of the useful 
property that the likelihood is guaranteed to increase monotonically. 

In the special case of 2 sources and 2 measurements it is straightforward to obtain an exact 
solution to (2.3c), see (Becker 2006) for further details.  For this reason we shall concentrate 
on such problems in the remainder of this paper. 

3. Results 
To demonstrate the performance of this algorithm we present results on a simulated data set.  
Comparisons are made to the GMM algorithm most closely related to ours, namely that of 
(Todros, 2004), which we shall refer to this as the full covariance GMM algorithm. 

The simulated signal used to generate the following set of results is generated using a six 
component independent GMM of dimension 2.  The data is rotated by an angle -9.445º.  The 
result shown depicts histograms of the rotation computed by ICA algorithms to render the data 
independent, i.e. +9.445º.  The algorithm is run on 2000 realisations of the data, the length of 
each time series is 2000 samples.  The angles computed by the ICA algorithm have been 
recorded and then histograms are computed.  This is repeated for various GMM model orders 
(K).  These results are shown in Figure 1. 

From Figure 1 one can see that the aligned algorithm offers significantly more consistent 
results than the full covariance scheme.  A further observation one can make is that the 
performance of the aligned GMM algorithm is significantly less sensitive to the selection of 
the number of Gaussians in the GMM.  It is evident from Figure 1a) that the performance of 
full covariance algorithm is best when the number of Gaussians matches that of the 
synthesised signal, specifically six.  There is little evidence from Figure 1 that similar factors 
affect the aligned algorithm. 
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FIGURE 1 Histograms of estimated angles.  a) Full covariance GMM b) Aligned GMM 

4. Conclusions 
Aligned GMMs provide a potentially powerful method for performing ICA.  They show 
several distinct advantages over the full covariance method.  Their performance is generally 
superior to that of the full covariance method, they are more robust to the selection of model 
order for the GMM. 
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