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Abstract

We report on the development of a novel Bayesian estimator for speech enhancement,
which is capable of modelling the time and frequency dependencies of speech. Central to
the development of the estimator is a conditional prior that is derived from the Markov
Random Field theory. The proposed prior is a conditional Gaussian prior that defines
the distribution of the amplitude of a speech STFT sample conditioned on the values
of its time and frequency neighbours. This formulation allows the explicit inclusion in
the estimation model of both time and frequency dependencies that exist among the
amplitudes of speech STFT samples. The resulting estimator presents an enhanced ability
in preserving the weaker speech spectral components compared to alternative estimators.

1. Introduction

The objective of this work is the development of a Bayesian speech enhancement esti-
mator that will account for the time and frequency dependencies of speech. An inspection
of a speech spectrogram reveals that successive spectral amplitude samples within a fre-
quency bin are correlated. Additionally, frequency dependencies within the same time
frame exist due to the common modulation, in time, of the frequency bins and also due
to the spectral leakage caused by the windowing functions used in the STFT transfor-
mation.

In traditional amplitude estimation algorithms for speech enhancement (i.e. Ephraim
& Malah (1984), Martin (2005)) the speech spectral amplitude samples are assumed
to be mutually independent. The time dependencies of speech are incorporated in the
estimation model with the decision directed method, which is used for the estimation of
the a priori SNR. Little work, has been done to incorporate the frequency dependencies
of speech.

In this work, we propose the modelling of speech spectral amplitudes with a prior
that is capable of modelling both time and frequency dependencies of speech. The prior
is derived from the theory of Markov Random Fields, and defines the distribution of
a spectral amplitude sample conditioned on the values of some of its neighbours. The
introduction of the neighbourhood allows the incorporation of the time and frequency
dependencies in the estimation model. Based on the proposed prior, we then derive an
efficient MAP estimator of the speech spectral amplitude.

The organisation of this paper is as follows: In section 2 we present the estimation
framework and introduce the Markov Random Field prior. The MAP estimator is derived
in section 3, where we also propose values for the prior’s parameters. Finally, in section 4
we present results from an objective evaluation of the proposed algorithm and highlight
its main benefits and limitations.
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2. Statistical model

Let us assume that we observe the noisy speech signal x, which is the sum of the clean
speech s and the noise signal n. The latter two signals are assumed to be zero mean and
uncorrelated. For the STFT representations of x, s and n it will hold:

X(k, l) = S(k, l) +N(k, l) (2.1)

where k and l are the frequency and time frame indices correspondingly. The typical
objective of a speech enhancement algorithm is the estimation of S(k, l) when only the
STFT of the noisy speech is observed. X(k, l) and S(k, l) in their polar forms will be
denoted as X ≡ R ejψ and S ≡ A ejφ.

The algorithm we propose estimates the speech spectral amplitude A, which is then
combined with the phase of noisy speech ψ to yield an estimate of S, that is, Ŝ = Â ejψ.
The estimation of A is performed with the Maximum A Posteriori (MAP) estimator.
In a traditional speech enhancement framework, the MAP estimator is formed as (see
Andrianakis & White (2006)):

Âi = arg max
Ai

[ln (p(Ri|Ai)p(Ai)))] (2.2)

where the subscript i is a shorthand notation for the (k, l)th sample of an STFT quantity.
The density p(Ri|Ai) is often referred to as likelihood, while p(Ai) is known as the prior.
The inclusion of the time and frequency dependencies of speech into the estimation model
can be performed by making the prior distribution p(Ai) conditional on some samples
of interest, An(i), which we call neighbours of Ai and will be defined in a subsequent
paragraph. The conditional prior can be written as p(Ai|An(i)) and the MAP estimator
with the incorporation of the new prior will then become:

Âi = arg max
Ai

[

ln
(

p(Ri|Ai)p(Ai|An(i))
)]

(2.3)

The construction of the above conditional prior can be based on the theory of Markov
Random Fields (MRF) (see Besag (1974)). MRFs can be considered as 2 dimensional
extensions of Markov Chains and can be defined on N points Ai with i ∈ P and P =
{1, 2, ..., N}, which typically lie on a lattice. The specific MRF model we are using is the
conditional Gaussian MRF prior (Besag (1974)), which is given by:

p(Ai|An(i)) ∝ exp

(

− 1
2σ2

(

Ai −
∑

j∈n(i) bijAj

)2
)

(2.4)

where bij are the MRF parameters and σ2 is the second moment of Ai.

The algorithm described here uses two neighbourhoods with the above priors: the first,
which is used for the unvoiced or speech absent frames, is a 4-neighbour system given
by:

An(i) = {A(k, l − 1), A(k, l + 1), A(k + 1, l), A(k − 1, l)} (2.5)

The second neighbourhood system we propose is used for the voiced frames and is a
‘harmonic’ neighbourhood:

An(i) = {A(k, l − 1), A(k, l + 1), A(k + kf , l), A(k − kf , l)} (2.6)

where kf is the frequency bin number that corresponds to the pitch frequency of frame
l.



Derivation of the Estimator 3

3. Derivation of the Estimator

In this section we derive the MAP estimator that is based on the Gaussian MRF speech
prior (eq. 2.3). To do so we first need to derive the expression for the likelihood p(Ri|Ai).
Assuming that the STFT coefficients of noise follow a complex Gaussian distribution,
the likelihood is (Andrianakis & White (2006)):

p(Ri|Ai) = 2Ri

σ2

N,i

exp
(

−R2

i +A2

i

σ2

N,i

)

I0

(

2RiAi

σ2

N,i

)

(3.1)

where σ2
N,i = E[|Ni|2] and I0(x) is the zeroth order modified Bessel function of the first

kind. Approximating the Bessel function using the formula I0(x) ≈ ex/
√

2πx, p(Ri|Ai)
can be written as:

p(Ri|Ai) ∝ A−0.5
i exp

(

− (Ri−Ai)
2

σ2

N,i

)

(3.2)

Substituting eqs. 3.2 and 2.4 in 2.3 and solving the maximisation problem by taking
the first derivative of the resulting expression w.r.t Ai, the estimator turns out to be:

Âi = ζ1 +
√

ζ2
1 − ζ2 (3.3)

where ζ1 =
2Riσ

2 + σ2
N,i

∑

j∈n(i) bijAj

2(2σ2 + σ2
N,i)

and ζ2 =
1

4

2σ2σ2
N,i

2σ2 + σ2
N,i

For certain values of its input parameters the square root in the above estimator can
have a negative value. This is due to a singularity at zero, introduced by the approxi-
mation of the Bessel function I0(x). Following the same rationale as in Andrianakis &
White (2006), the output of the above estimator is used when the argument of the square
root is non negative, otherwise, the noisy sample Ri is suppressed by a fixed amount (50
dB).

The definition of ζ1 in eq. 3.3 reveals that the values of An(i) are required for the
estimation of Ai. However, these values are not available as we do not directly observe
A. In the processing of a speech utterance we assume that the estimation proceeds from
smaller to larger time frame and frequency indices. During the estimation of Ai, an
estimate for a set Aj∈Y of its neighbours has already been calculated, while for a second
set of neighbours Aj∈U an estimate is not yet available. The sets Y and U are Y =
{(k− 1, l), (k, l− 1)}, U = {(k+ 1, l), (k, l+ 1)} for the unvoiced or speech absent frames
and Y = {(k − kf , l), (k, l − 1)}, U = {(k + kf , l), (k, l + 1)} for the voiced frames. The

estimates we use for Aj∈U are Âj = max
(

(

X2
j − σ2

N,j

)0.5
, ǫ σ2

N,j

)

with ǫ = 0.0032.

The weights we used for the neighbours were bij = 0.1 if j ∈ Y and bij = 0.06 if
j ∈ U and were determined by simulations. The value of σ2 was calculated from the a
priori SNR ξ based on the relation ξi = σ2

i /σ
2
N,i. The a priori SNR was calculated with

the decision directed approach proposed in Ephraim & Malah (1984) and smoothing
parameter α = 0.98.

4. Results

The proposed algorithm was evaluated using the average segmental SNR (SegSNR)
and the PESQ (ITU recommendation P.862) objective measures. The clean speech, which
consisted of 48 sentences from the TIMIT database, was corrupted by white Gaussian
noise and recorded car noise in 3 different input SegSNR levels. The results of the pro-
posed algorithm (MAP-MRF) are compared against the results of the MAP amplitude
estimator with Chi speech priors and shape parameter a = 1 (see Andrianakis & White
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SegSNR [dB] PESQ

Input 0 10 20 2.11 2.80 3.46

MAP-Chi 7.56 13.30 20.66 2.72 3.28 3.88

MAP-MRF 7.69 13.97 21.50 2.87 3.46 3.96

Table 1. Objective measure results for white noise

SegSNR [dB] PESQ

Input 0 10 20 2.89 3.49 4.07

MAP-Chi 10.82 17.03 24.22 3.40 3.88 4.22

MAP-MRF 10.89 17.14 24.40 3.47 3.93 4.24

Table 2. Objective measure results for car noise

(2006) for details). The latter algorithm (MAP-Chi) is a special case of the proposed
MAP-MRF algorithm for bij = 0.

The MAP-MRF algorithm requires a pitch estimate for each STFT frame. The pitch
estimates were extracted with the 2.4 kbps MELP Proposed Federal Standard Speech
Coder, which is based on autocorrelation. To simulate a realistic scenario the pitch esti-
mates were extracted from the noisy speech, which was preprocessed with the MAP-Chi
algorithm. The latter algorithm is computationally efficient and hence suitable as a pre-
processing step.

The objective scores results for the two examined algorithms are shown in tables 1, 2.
The proposed MAP-MRF algorithm achieves higher scores in both objective measures
and for all input SegSNR levels. Informal listening tests and examination of spectrograms
reveal that the coupling imposed by the MRF prior achieves the recovery of some weak
speech spectral components which are suppressed by the MAP-Chi algorithm. In par-
ticular, the frequency coupling recovers some speech harmonics, which have a low SNR,
while the time coupling results in a better recovery of speech at its onset. The main draw-
back of the proposed method is that the spurious spectral peaks have a higher amplitude
compared to those of the MAP-Chi algorithm and as a result the residual noise has more
musical character. Our current research efforts are trying to address this problem and
result in a scheme that will combine the uniform residual noise with the enhanced ability
of the proposed MRF prior to restore the weaker speech spectral components.
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