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Abstract

We consider ICA codebooks and identify when these can be used to extract independent
components from a stationary scalar time series. This is motivated by recent empirical
work that suggests that single channel ICA can sometimes be used in this way. Here we
show that if the sources are spectrally disjoint we can identify and separate them. We will
finally consider a space-time ICA codebook which can be used to perform convolutive
blind source separation and in some circumstances extract more sources than sensors.

1. Introduction
While Independent Component Analysis (ICA) was originally proposed for the blind
separation of vector-valued observations recent empirical work suggests that it can some-
times be used to separate out independent sources from a single time series. Here we will
call this type of analysis “Single channel ICA” (SCICA). SCICA can be regarded as an
extreme case of underdetermined ICA (one sensor!) and it is interesting to explore when
and how applying a standard ICA solution can solve this problem.

Here we set out a mathematical framework that explains, under certain assumptions,
how and when standard ICA can perform source separation on a single sensor and we
show that SCICA can only separate out sources whose power spectra have disjoint sup-
port. We conclude with two possible algorithmic solutions and some numerical experi-
ments. The results follow our predicted theory.

2. Single Channel ICA
A simple but popular model of a signal, x(t) ∈ RN is to represent it as a linear super-
position of functions ai(t): x(t) =

∑
i siai(t), where si are the function weights or coef-

ficients, or in vector-matrix form: x = As, where x = [x(t), x(t − 1), . . . , x(t −N + 1)]T

and A = [a1(t), · · · , aN (t)]. Often A is chosen to be invertible so that the inverse (anal-
ysis) equation is uniquely defined: s = Wx. where W = A−1. This popular framework
includes the DFT, wavelets, etc. If si are treated as independent then we also have the
classic ICA model.

In practice one might break up a signal into a series of contiguous analysis blocks and
treat these as a sequence of vector observations. A standard ICA algorithm can then be
applied to the data matrix to learn a ‘well matched’ representation. This is also closely
linked with learning sparse factorial codes.

2.1. Separation & Reconstruction
In standard ICA, each source can be separated and reconstructed in the observation
domain through the operation:

xsi = A(:,i)W(i,:)x
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where xsi is the i-th source in the observation domain. With a single channel of data we
can apply the same formula to non-overlapping data blocks giving:

xsi(nN − k + 1) = A(:,i)

N∑

j=1

W(i,j)x(nN − j + 1)

However the resulting source estimates are highly dependent on the block alignment. For
shift-invariance we need to use ‘cycle-spinning’: essentially a different estimate is made
for each possible block alignment. The ‘cycle-spinning’ estimate is then the average of all
of these fixed block estimates.

In our case the cycle-spinning separation is given by:

xsi
(t) =

1
N

N∑

k=1

A(k,i)

N∑

j=1

W(i,j)x(t− j + k)

= ai(−t) ∗ wi(t) ∗ x(t)

(2.1)

where ai(t) is the filter associated with the column vector A(:,i) and wi(t) is similarly
defined.

Furthermore if we use a pre-whitening filter then the separation and reconstruction
involves application of: the whitening filter; the separation filter in equation (2.1); and
the inverse whitening filter. However, since filters commute this is equivalent to just the
application of the separation filter. Whitened data also implies that the separating matrix
W is orthogonal and therefore ai(t) = wi(t), so the separating filters are symmetric
and has zero phase.

2.2. Independent or merely interesting?
What is not clear is when we can really expect the transform coefficients si(t) to be
independent. If we merely wish to learn ‘interesting’ features we can relax the notion
of independence (e.g. Topographical ICA). In contrast, when identifying real sources
independence is important. We will see next that the appropriate model is a special
verion of Cardoso’s Multi-dimensional Independent Component Analysis (MICA). Recall
MICA assumes that the observed data x can be decomposed into x =

∑
p xp where each

xp ∈ RN lie in an np dimensional subspace Ep and the set {E1, . . . , Ec} are linearly
independent.

3. Independent Mixtures of Random Processes
We now determine when a single channel signal can be modelled as a MICA system.
Suppose that x(t), admits a decomposition into the sum of mutually independent random
processes, xsi(t):

x(t) =
∑

i

xsi(t) (3.1)

Furthermore if xsi(t) is a filtered i.i.d. process xsi = hi∗si then we can form an ICA-type
model:

x =
∑

i

Hisi (3.2)

where Hi is the Toeplitz matrix associated with the filter hi. Note for a single source,
solving for s1(t) is the blind deconvolution problem.

At this point it appears we will need to consider overcomplete representations. However
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when hi is not invertible the matrix Hi may be rank deficient. While this immediately
precludes the possibility of extracting si(t), it does not necessarily preclude the estimation
of xsi

(t). If each matrix Hi is rank deficient: i.e. its columns only span a subspace Ei

then xsi = Hisi ∈ Ei and, if all the subspaces, {Ei}, are linearly independent, we have
a valid MICA model.

More generally xsi(t) can lie on a low dimensional subspace Ep characterized by the
significant eigenvectors of the correlation matrix Cxi , but without the restriction xsi =
hi ∗ si. For the subspaces, {Ei}, to be linearly independent the components must have
disjoint spectral support.

4. Solving SCICA with ICA
Cardoso argued that a standard ICA algorithm can be used to learn MICA by grouping
the components based on dependency. Here we note that the learnt basis functions are
approximate shifts of the generating filters hi. The number of shifted versions of hi

will depend on the bandwidth. Furthermore since the components are assumed to have
disjoint spectral support. We can group them based on power spectra. We therefore
propose the following algorithm:
• Temporally whiten x(t) with possible dimension reduction
• Apply ICA to learn mixing matrix A.
• Calculate Transfer Functions (TFs) of the basis vectors ai(t) and cluster into groups

γp, p = 1, . . . , c using k-means.
• Calculate the separation and reconstruction filters, f̃p(t), defined as:

f̃p(t) =
1
N

∑

i∈γp

wi(−t) ∗ wi(t) (4.1)

5. A Quick and Dirty Solution
A faster method that avoids explicit clustering can be developed based on a deflationary
approach. It is particularly attractive when there are only a small number of independent
processes to be extracted (for example, when using the constrained ICA).

We first note that the separating filter, above, can be approximated using any single
independent component associated with the given source:

f̃p(t) ≈ αpfi(t) =
αp

N
wi(−t) ∗ wi(t), for any i ∈ γp

were αp can be estimated by minimising the norm of the residual r(t) = x(t)− αpfi(t) ∗
x(t).

This suggests the following algorithm:
• Temporally whiten signal (with possible dimension reduction);
• Extract one component (deflationary ICA) and calculate: f̃p(t) = αp

N wp(−t) ∗wp(t);
• Calculate the residual rp(t) = rp−1(t)− f̃p(t) ∗ rp−1(t) (r0(t) = x(t));
• repeat from step 2.
This method tends to give inferior results to the full ICA solution. However it can be

much faster.
5.1. Toy Example

We give a toy example: the mixture of two filtered sparse i.i.d. signals with approximately
disjoint support plus a pure sinusoid: see figure 1. Applying FastICA to the mixture of the
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Figure 1. The impulse responses and transfer functions of the two mixing filters (left and
centre) and a section from the single sinusoid (right)

Figure 2. Basis functions from the columns of the mixing matrix, A, learnt using FastICA.
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Figure 3. The zero-phase reconstruction filters for the three different sources

sources (delay dimension = 100, reduced to 36 using PCA) resulted in the basis functions
(columns of A) shown in figure 2. The filter transfer functions were then grouped into 3
clusters using k-means. The separating filters are plotted in figure 3. Note that they act
as frequency adaptive bandpass filters. The signals were well separated by these filters.

6. Extensions to Space-Time ICA
Following along the same lines it is possible to sort multi-channel data into space-time
vectors in a similar way to Space-Time Adaptive Processing (STAP) in radar. So far our
experiments in this direction have shown that it can be used to solve convolutive blind
source separation and under certain circumstances extract more sources than sensors.
Examples of these will be given in the presentation.


