
iruses are responsible for a variety 
of illnesses, ranging from the 
common cold to more serious 
conditions such as AIDS and 

some types of cancer, but their methods of 
infection are always similar. Once a virus 
has entered a host’s body, it hijacks the 
replicating mechanisms within the host’s 
cells and starts pumping out copies of 
itself. Viruses can only do this by concealing 
their genomic material within a protein 
shell, or capsid, which allows them to slip 
inside the host’s body like a Trojan horse. 
These capsid shells often have complex 
symmetrical structures, so mathematicians 
are investigating their shapes in the hope 
of discovering new treatments for viral 
infections.

A virus is essentially just a short string of 
DNA (or RNA, a related molecule) wrapped 
inside a capsid shell, and longer strings of 
genomic material require a larger shell to 
hold them. This creates a problem because 
the genomic material must describe the 
entire virus, including the capsid, and a larger 
shell in turn requires a longer string of DNA 
or RNA. 

Francis Crick and James Watson, the 
biologists who also discovered the structure 
of DNA, suggested in 1956 that symmetrical 
capsids provide a solution as they can be 
constructed from just a few basic building 
blocks. This means the genomic material of 
a symmetrical virus can be much smaller, 
because it simply needs to describe small 
sections of the capsid and instructions for 
repeating them in a symmetrical pattern. 

It was later found that many viruses use 
icosahedral symmetry to compact their 
genome, as their capsids resemble a shape 
made from 20 triangular faces called an 
icosahedron. It can be rotated in 60 different 
ways and still appear to be the same – in 
other words, it has 60 axes of symmetry. 

Although this model works well for small 
viruses with 60 proteins, it cannot explain 
the structures of larger capsids, suggesting 
there is a more intricate pattern at work. 
The biologists Donald Caspar and Aaron 
Klug discovered this pattern in 1962, when 
they realised that dividing the 20 triangles of 
an icosahedron into smaller triangles could 

explain more complicated viruses than Crick 
and Watson’s simple icosahedron model.

The Caspar-Klug model is now the standard 
way of explaining capsid structures, but there 
are still some viruses that don’t quite fit. 
Human papilloma viruses, the major cause of 
cervical cancer and a factor in other cancers, 
have a five-fold or pentagonal structure 
that doesn’t match with traditional ideas 
of symmetry, because a pentagon cannot 
be built from regular triangles. Crick and 
Watson’s theory that  viruses are constructed 
from a few symmetrically-arranged building 
blocks seemingly doesn’t work for papilloma 
viruses, but Reidun Twarock at the University 
of York has found a fix based on decades-old 
pure mathematics. 

In the 1970s, the English mathematical 
physicist Roger Penrose discovered a way of 
combining two four-sided shapes called the 
“kite” and “dart” to produce patterns with 
five-fold symmetry. Unlike regular pentagons, 
these two shapes fit together without leaving 
any gaps. They also differ from squares or 
triangles, because the patterns they produce 
don’t ever repeat themselves. It turns out 
that by using Penrose’s concept in three 
dimensions, Twarock was finally able to 
model the capsid structure of complicated 
viruses like human papilloma.

Many viruses have a symmetrical structure made from 

basic building blocks, and biologists have  struggled 

to explain some of the more detailed shapes. Now, 

mathematicians are using complex theories of symmetry 

to reveal these viral structures, ultimately leading to new 

treatments for diseases.

“Modelling the 
structure of 

viruses could 
have enormous 
ramif ications for 
drug design and 

the development of 
new treatments.”
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Twarock’s work even allows her to peer 
inside the capsid shell and understand how 
it connects to the virus’s genomic material. 
The Caspar-Klug model can only explain the 
capsid’s surface, so biologists currently rely 
on complicated imaging techniques such as 
cryo-electron microscopy to understand 
the structure of the entire virus. Now, 
Twarock has been able to accurately predict 
characteristic features of a virus’s internal 
structure, and has found  links between the 
external shape of the protein container and 
the organisation of the viral genome inside.

Modelling virus structures in this way could 
have enormous ramifications for drug design 
and the development of new treatments. 
Biologists know that some viruses change 
their shape when infecting a host cell, 
rearranging their capsid shells in order to 
release their genomic material, but exactly 
how this transition occurs is unclear. By 
classifying the possible shapes that a virus can 
take, Twarock hopes to model the various 
stages a virus goes through as it changes 
and work out which shapes are most likely 
to occur. This will ultimately help develop 
methods that inhibit these structural changes 
and prevent viral infection.
Her mathematical research could also 
help turn the tables on viruses, hijacking 
their capsid shells for  use in drug delivery. 

Researchers working in this area currently 
select viruses based on the host cells that 
they target, then replace the viral genomic 
material with an alternative, beneficial 
sequence. Twarock’s insight could help them 
choose viruses based on the properties of a 
particular capsid shape, allowing for better-
targeted treatments.

In addition to the medical benefits, Twarock 
could also help settle a biological argument 
about the origin of viruses. Many viruses 
share similar shapes despite having very 
different genetic sequences, a puzzle that 
biologists have yet to solve. Some suggest 
these similar viruses must have evolved from 
a distant common ancestor, but others argue 
that genetic differences make this impossible. 
Twarock’s work indicates that these shapes 
could result from mathematical limitations, 
and that different viruses have similar 
structures because there are only so many 
that are actually possible.

A typical virus is 10,000 times smaller than 
a grain of sand, but their structures are so 
intricate that the simple biological models 
developed by Crick and Watson and then 
Caspar and Klug were not able to fully 
capture the details. It has taken Twarock’s 

advanced pure mathematics to make sense 
of them, allowing biologists to study viruses 
in greater detail than ever before. The more 
we understand about virus shapes, the better 
equipped we are to fight their infections, so 
studying their symmetry will ultimately help 
save lives.

Icosahedral symmetry

The icosahedron is one of the five Platonic solids, 
the only shapes that can be constructed from 
identical polygonal faces, and its many symmetries 
have been well studied by mathematicians. It is said 
to have 5:3:2 symmetry, as there are six 5-fold 
axes of symmetry, ten 3-fold axes of symmetry 
and fifteen 2-fold axes of symmetry. This structure 
allowed Crick and Watson to identify the placement 
of various proteins on a virus’s capsid shell for some 
small viruses.

Their model predicts that any protein not sitting on 
an axes of symmetry must appear in multiples of 
60, but symmetry cannot account for the placement 
of more than 60 proteins, and further conditions 
are needed to pinpoint exactly where all proteins 
are located. Caspar and Klug partially solved this 
problem by overlaying an additional triangular lattice 
on to the icosahedral model, and Twarock takes 
this further with a quasilattice derived from Penrose 
tiles.

Penrose tiles

There are only three regular polygons that tile the 
plane: squares, triangles, and hexagons. These 
three shapes fit together in regular grids that 
exhibit rotational, reflectional and translational 
symmetry, but they are not the only tilings possible. 
Roger Penrose’s irregular kite and dart shapes 
also tile the plane, displaying both reflectional and 
5-fold rotational symmetry, but not translational 
symmetry. In other words, Penrose tilings are 
aperiodic and never repeat themselves.

Penrose was not the originator of aperiodic tiling, 
but he was the first to show it could be done with 
just two shapes. Although Penrose tiles were 
originally the result of mathematical curiosity, 
they found an application in the mid 1980s with 
the discovery of quasicrystals, an unusual atomic 
structure found in some metallic alloys that could 
only be explained by Penrose’s work. Now, 
Twarock’s research shows that Penrose tilings can 
also be applied to the structure of viruses.
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