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Urban Maths: Mind Your S’s and D’s!
A. Townie

1 PEBCAK

I still spend some time writing com-
puter code, but not half as much as I
used to do when I first began my ca-

reer. Back in those days, which are longer
ago than I would care to mention, I typed
many more lines of code than I did lines of
text. And the nature of the code I was writ-
ing, and the tools that I was using, meant
that I typed string quite a lot. Now, that
wouldn’t necessarily be a problem, but that
sequence of characters has become perma-
nently lodged in the muscle memory of my
fingers, so much so that when I try to write
strong I often end up with string instead.

Many people would, perhaps quite
rightly, triage this as a PEBCAK bug, that
is one where the Problem Exists Between

3 Letter replacement

Having made those (admittedly rather sig-
nificant) simplifications the analysis is
quite straightforward. The first stage in-
volves creating a dataset that describes the
number of valid words that can be created
by replacing one letter for another; note
that, in this stage we consider every pos-
sible pair of letters, so that we then have
data that supports the analysis of alterna-
tive keyboard layouts. Also note that the
data used in this article is based on an
analysis of just under 63,000 words, which
were taken from a list that is almost al-
ways included in distributions of the Linux
Operating System.

Using this list of words, we look
through all 650 (26 × 25) combinations of

Chair And Keyboard. However, I think that’s somewhat unfair.
I don’t mind mistyping, but what I do mind is the fact that this
particular mistype is not highlighted with a red underline. In par-
ticular, I mind that the creator of the nearly ubiquitous qwerty
keyboard chose to put i and o right next to each other when, in
my problem case, replacing the latter with the former still pro-
duces a valid word!

2 Decisions and simplifications

Now, I don’t think it’s fair to criticise without at least trying to
make things better. So, I embarked on a quest to see if I could cre-
ate a ‘better’ keyboard. In particular, I’d like a keyboard where
replacing one letter with a neighbouring one didn’t create valid
words, or at least didn’t create too many valid ones.

There are other similar issues relating to typing accuracy that
I intend to ignore within this article. Some examples include:

• Reversed letters. This means I’m not interested in the dif-
ference between goal and gaol, even though it can be quite
important in the footballing fraternity.

• Misplaced spaces. This means I’m not concerned with
someone who likes having jelly and something that is like
shaving jelly, even if that cuts down the number of parties
I’m invited to.

• Additional (or missing) letters. This means that I’m not
worried about an extra t creeping into phrases like the busy
ladies, although I probably should be.

To further simplify my analysis, I’m only interested in
mistypes that occur in the same horizontal row of the keyboard. I
find the slight horizontal offsets that are used on most keyboards,
which nudge the keys away from a strict grid formation, means
that it’s rare I unknowingly get a key from the wrong row.

And, if that wasn’t enough, I’m also going to ignore the fact
that some words are used much more often than others, which
should mean that some mistypes are much more likely to happen
than others.

pairs of dissimilar letters, counting the number of times that a
letter replacement in a valid word results in another valid word.
The frequency distribution of these counts (as determined by
Gnuplot’s smooth function) is shown in the top-half of Figure 1.
It is apparent that this is a long-tailed distribution, with over half
its elements falling in the first bin of the histogram.

The bottom-half of Figure 1 shows, on the horizontal scale,
the actual counts themselves; the vertical scale is random jitter,
so that the density of dots provides a visual representation of the
frequency distribution. Again, this shows the long tail of the dis-
tribution. It also indicates that the 650 values are actually 325
repeated values; this follows from the observation that letter re-
placements are reversible, for example:

• Replacing the e in bone with d to get bond is matched by;
• Replacing the d in bond with e to get bone.

Table 1 shows the five worst pairs of letters, as determined by
the above analysis. Note that d and s are by far the worst pair,
accounting for almost double the number of errors of the next
worst pair – and these letters are placed next to each other on the

Figure 1: Distribution of new valid word counts.
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standard qwerty keyboard. (My mistyped pair of i and o isn’t ter-
ribly bad, being the 12th worst pairing, with a replacement count
of 538.)

Letter one Letter two Replacement count
d s 3,276
d r 1,642
r s 951
a o 895
a i 883

Table 1: Worst five letter replacement pairs

4 Qwerty and Dvorak

The second, and final, stage of the analysis involves walking
through each keyboard row, summing up the number of valid
words that could be created by mistyping neighbouring letters.
So, for the first row of the standard qwerty keyboard, we’d sum
the number of valid words created when substituting:

• q with w
• w with e
• e with r
• . . .
• o with p

We’d then repeat the same process for the second and third
rows to give us an overall total. In the case of qwerty, the total
is 6,624, and the worst case pairing is, as noted earlier, s and d,
which contribute 3,276 of the total.

Given those observations, it’s not that difficult to create a key-
board that has a lower, and hence better, total letter replacement
count. In fact, any arrangement that separated the s and d would
be better. But, before we think about trying to come up with
an optimal keyboard (based on our chosen measure) we ought
to consider the most significant challenger to qwerty, namely the
Dvorak keyboard (Figure 2).

The Dvorak keyboard was announced in the 1930s and was
based on a detailed analysis of the English language (much more
detailed than the simple analysis described above) along with a
study of the physiology of the human hand. To say that this new
layout caused some controversy would be rather like saying there
has been mild disagreement between Frequentists and Bayesians
on the fundamental underpinnings of probability theory. The
keyboard controversy has even extended to economics since, if
Dvorak is clearly better than qwerty then the efficient market hy-
pothesis would suggest we should all be using keyboards with the
vowels on the left of the middle row.

Given this tumultuous background our very simple analysis
has absolutely no hope of settling the qwerty versus Dvorak de-
bate. Despite that, it’s interesting to see how Dvorak fares. It has

a total score of 5,788 (as opposed to 6,624 for qwerty). So, based
on our approach, Dvorak is better than qwerty, but not that much
better. The worst pair of letters on the Dvorak keyboard are a and
o, which contribute 895 of the total; as shown in Table 1 this is
the fourth worst pairing.

5 Optimised alternatives

A number of other alternative keyboard layouts have been sug-
gested. I certainly remember some devices that had the letters in
alphabetical order, a layout that scores 2,937, comfortably beating
both qwerty and Dvorak. There are also some layouts designed
specifically for two hand typing; in effect these have a total of six
rows, three for each hand.

To get a quick idea of what a good – I hesitate to use the word
optimal – keyboard would look like, a very simple hill descent
optimiser was implemented. This starts with a random keyboard
(with three rows, containing 10, 9 and 7 letters, respectively) and
makes the best improvement it can by swapping any two letters.
This letter-swapping process is then repeated until no more im-
provements can be made. The statistics for the keyboard scores
from 1,000 replications are illustrated in Figure 3 (which is of the
same form as Figure 1).

Two things are apparent from this figure. Firstly, there is a
reasonably wide distribution of local minima, as found by the hill
descent algorithm. Indeed, across the 1,000 replications, there
were no duplications amongst the unimprovable keyboard lay-
outs. This suggests the space we are trying to optimise over con-
tains lots of local minima and, if we were serious about trying
to find an optimal keyboard we should try a different optimising
routine, perhaps simulated annealing. But, if we were really seri-
ous about finding an optimal layout, we wouldn’t have introduced
all the simplifications we did early on in this article!

The second thing that is apparent is that even the worst of the
keyboards found by the hill descent algorithm is much better than
an alphabetical layout (approximately 1,150 compared to 2,937),
which in turn was much better than Dvorak and qwerty.

6 Conclusions

Despite all the simplifications and limitations inherent in this
analysis it really does look as though a better keyboard layout
could be created. On the one hand, the continued ubiquity of

Figure 3: Distribution of hill descent optimised keyboards.

Figure 2: Dvorak keyboard (letters only).
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qwerty would seem to argue that any new layout is unlikely to
catch on. However, the introduction of new devices, especially
those with touch screen interfaces, may provide an opportunity
for new layouts to gain ground.

And, there may even be an opportunity for two different lay-
outs to co-exist side-by-side. This is already the case for the nu-
meric keypads on computer keyboards (which have 9 at the top-
right) and the numeric keypads on telephones (which have 9 on
the bottom-right). This difference has caused me to mis-dial quite
a lot of phone numbers, and in that case there’s no such thing as
an invalid number and no red underline to help me out. So, on
reflection, maybe sticking to a single layout is best after all!

7 Notes

Gnuplot is a ‘portable command-line driven graphing utility’; it
is available for many platforms, including Linux and Windows.
More information may be found at www.gnuplot.info/.

The Wikipedia article (http://en.wikipedia.org/wiki/
Dvorak_Simplified_Keyboard) is a good place to start when
looking for further information about the Dvorak layout.
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Transcendental Infinite Series

I would like to share a result that I was reminded of recently.
Readers will be aware of certain infinite series for π and ln 2.
They are, respectively,
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The numbers π and ln 2 are transcendental and the series are spe-
cial cases of the series
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where a and b are positive integers. A while ago the possibility
had occurred to me that for all such a and b each series converged
to a transcendental number.

The following proof that this is so illustrates the applicabil-
ity of one area of mathematics to another. It exploits the discrete
Fourier transform and its inverse transform and hence we have
a connection with signal processing for which these entities are
fundamental. The result, also proved in [1], follows the argument
of Baker, Birch and Wirsing in [2]. Reference [3] gives standard
source material for the fundamental theorem of Baker, involving
the transcendence of linear forms of logarithms that underpins
this work. Reference [4] gives a modern alternative perspective.

Let f(n), n ∈ N be a periodic sequence of algebraic numbers
(i.e. not transcendental) with period r where

∑r
k=1 f(k) = 0,

also let ξ = e2πi/r, ξ being an rth root of unity.
Then what I showed was the following:
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f(k)ξ−sk ln(1− ξs). (1)

This can be seen by expanding the log terms in their Taylor series:
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ξ2s
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inserting it into the expression (1), and then reversing the order of
summation, (which is allowed by Abel’s theorem on convergent
complex power series).

Indeed, with F (s) =
∑r

k=1 f(k)ξ
−sk the Fourier transform

of the finite sub-sequence f(k), it is easy to see that with the
Taylor expansion of the log, the r.h.s of equation (1) becomes
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since

F (r) =
r∑

k=1

f(k) = 0.

But
1

r

r∑
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F (s)ξsn = f(n)

is the inverse Fourier transform of F (s) and hence equation (1)
follows.

But (1) is of the form:

b1 ln(a1) + b2 ln(a2) + · · ·+ bn ln(an),

where the ai and bi, i = 1 . . . n are algebraic numbers. (This
is because the sums and products of algebraic numbers forming
these coefficients are algebraic numbers.)

In 1966 Alan Baker proved that the above sum of log terms,∑n
1 br ln (ar), where the coefficients and arguments comprise

non zero algebraic numbers, is always transcendental if it does
not vanish. Baker was awarded a Fields Medal in 1970 for his
work in number theory, especially in the areas of transcendence
and Diophantine geometry.

Paul Masham FIMA
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