Don’t Switch! Why Mathematicians’ Answer to the
Monty Hall Problem is Wrong
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—amathematical problem that has made the front pages of

national news. Everyone now knows, or thinks they know,
the answer but a realistic look at the problem demonstrates that
the standard mathematician’s answer is wrong. The mathemat-
ics is fine, of course, but the assumptions are unrealistic in the
context in which they are set. In fact, it is not clear that this prob-
lem can be appropriately addressed using the standard tools of
probability theory and this raises questions about what we think
probabilities are and the way we teach them.

T he Monty Hall problem is one of those rare curiosities

1 Introduction

The Monty Hall problem hit the headlines in 1990, when Craig
F. Whitaker of Columbia, Maryland, asked Marilyn vos Savant:
‘Suppose you’re on a game show, and you’re given the choice of
three doors: behind one door is a car; behind the others, goats.
You pick a door, say No. 1, and the host, who knows what’s be-
hind the other doors, opens another door, say No. 3, which has a
goat. He then says to you, “Do you want to pick door No. 2?7’ Is
it to your advantage to take the switch?’!

Vos Savant wrote a column called ‘Ask Marilyn’ in the pop-
ular magazine Parade, in which she responded to readers’ ques-
tions. According to the Guinness Book of Records, at the time
she was the woman with the highest IQ in the world.

Vos Savant responded to Whitaker in her column of 9 Septem-
ber 1990: she said you should switch and that you double your
chances of winning if you do. The result was a torrent of criti-
cism and abuse — much of it from mathematicians — such as:

e ‘May I suggest that you obtain and refer to a standard text-
book on probability before you try to answer a question
of this type again?” (Charles Reid, PhD, University of
Florida)

* ‘You blew it, and you blew it big! ... There is enough
mathematical illiteracy in this country, and we don’t need
the world’s highest IQ propagating more. Shame!” (Scott
Smith, PhD, University of Florida)

* ‘You made a mistake, but look at the positive side. If all
those PhD’s were wrong, the country would be in some
very serious trouble.” (Everett Harman, PhD, US Army
Research Institute)

She followed it up with another article on 2 December, ad-
dressing the problem in more detail, to which there was more
criticism and abuse. Vos Savant said she received 10,000 letters
about her articles, including almost 1,000 from PhDs. ‘Of the let-
ters from the general public, 92% are against my answer, and of
the letters from universities, 65% are against my answer. Over-
all, nine out of ten readers completely disagree with my reply.’
In a third article on 17 February 1991, she spelt out her reason-
ing in even more detail, and suggested school classes carry out
empirical trials. These were carried out and supported her view
that switching increases your chances of winning, and now most
of her correspondents agreed with her. On Sunday, 21 July 1991,
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John Tierney wrote a front page article in the New York Times that
was very firmly on her side.?

It looks as if America is in some very serious trouble!

There were some complaints that vos Savant’s first article did
not fully spell out all the assumptions underlying her answer and
which constituted a subtle extension of the original question. Nor
were her arguments mathematically rigorous. She accepted these
points but argued that her respondents had clearly not been con-
fused, and that mathematical rigour had no place in what was
essentially a light-hearted magazine column. We will come back

to the question of those assumptions later.
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Figure 1: You pick door 1.

Figure 2: Monty shows you a goat behind door 3.
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Figure 3: Where is the car?



2 A brief history of the Monty Hall problem

Monty Hall, real name Maurice Halperin (born 1921), was a
Canadian TV personality, who hosted the American television
game show Let’s Make a Deal in the 1960s and 1970s. In this pro-
gramme, Monty offered many different types of challenge to con-
testants and the Monty Hall problem is supposedly based on one
of them, though in fact the game as described above did not appear
on the show. The ideas behind the Monty Hall problem were far
from new, though. Joseph Bertrand’s Box paradox, which he de-
scribed in 1889 [1], was based on similar ideas and Martin Gard-
ner’s Three Prisoners problem of 1959 [2] was equivalent to it in
mathematical terms.

The modern version, but without the goats, was described
in a letter to American Statistician by Professor Steve Selvin of
the University of California in 1975 [3]. This introduced Monty
Hall (but spelt Monte) and Let’s Make a Deal. Like vos Savant,
Selvin received letters claiming his solution was incorrect so he
expanded on his original solution in a second letter later the same
year. He noted, in particular, that: ‘Benjamin King pointed out
the critical assumptions about Monty Hall’s behavior that are nec-
essary to solve the problem’ [4]. It was in this second letter that
the name ‘Monty Hall problem’ first appeared in print. The goats
appear to have originated with Whitaker.

3 The mathematics of the Monty Hall problem

There are various ways to solve the Monty Hall problem mathe-
matically. Here is one using Bayes’ theorem, which tells us how
to compute certain types of conditional probabilities. It is some-
times called the ‘probability of causes’ theorem, because if we
have an outcome that can arise in different ways (‘causes’), it tells
us how likely those causes are in the light of the outcome. De-
spite the fact that it can be deduced relatively easily from the basic
rules and definitions of probability theory and is absolutely sound
mathematically, its use sometimes gives rather unintuitive results.
The general form of Bayes’ theorem is:

_ P(A|By)P(B;)
P(B;|A) = > P(A|B;)P(B;)

where A is the result that we have and the B; are a set of mutu-
ally exclusive events that includes all the possible ‘causes’. Bayes’
theorem has the advantage that, not only does it give the correct
answer, it forces us to be explicit about our assumptions.

It deals very easily with the Monty Hall problem. Let C; be
the event ‘the car is behind door ¢” and D; be the event ‘Monty
shows you a goat behind door 7°. Suppose you choose door 1 and
Monty shows you a goat behind door 3. What we need to know is
the conditional probability P(C'|Ds3), the probability that the car
is behind the door you have chosen, now that Monty has shown
us a goat behind door 3.

By Bayes’ theorem, assuming that Monty will always open
a door, never open the door you have chosen and never show us
the car (so the D; are the only possibilities we need to take into
account):

P(C1|D3) =
P(Ds3|C1)P(Ch)
P(Ds|C1)P(Ch) + P(D3|Cy)P(C3y) 4+ P(Ds|C3)P(Cs)

If we assume that the car is initially equally likely to be behind
any door then the P(C;) are easy, they are all 1/3 but the C”s and

D’s are not independent so what are the conditional probabilities?
Let us start with P(D3|C"). Now door 1 conceals the car so both
doors 2 and 3 conceal goats, so if Monty always chooses at ran-
dom P(Ds|Cy) = 1/2. And what is P(D3|C5)? Now our door
(door 1) conceals a goat and door 2 conceals the car so Monty
has no choice but to open D3 as he never shows us the car, so
P(D3|C3) = 1. Similarly P(D3|C5) = 0. Plug these numbers
in:

1/2x1/3 1
/2x1/3+1x1/3+0x1/3 3

P(Cy1|D3) = 1

and we see that the probability our original door conceals the car
is still 1/3. The car is not behind door 3 so the probability that it
is behind door 2 must be 2/3. So switch.

4 The assumptions

The mathematics is correct, so you do indeed seem to double your
chances by switching but only provided certain assumptions hold.
As the words in italics above show, there are actually a number
of assumptions:

. Monty will always open a door.

. Monty never opens the door you have chosen.

. Monty never opens the door with the car behind it.

. The car is equally likely to be behind any door.

W\ AW N =

. Given a choice of doors, Monty chooses at random.

Where do these assumptions come from and just how plausible
are they?

If we had watched Monty play this game many times we might
have been able to spot a pattern that would justify them but, as
we have seen, Monty Hall never played this game; no comfort
from that source. Where do they come from? They were not
in Craig Whitaker’s original query given above but vos Savant’s
added some crucial words in her response: ‘the host, who knows
what’s behind the doors and will always avoid the one with the
prize’ (my emphasis). Vos Savant has done what all academics
do when putting this problem to students (and I do when I am
putting it to mine), she has turned a real problem that mathe-
maticians cannot answer because they don’t know what the true
probabilities are into one they can answer, by making plausible
assumptions. Except that it is not clear in this case how plausible
the assumptions are.

Let us start by thinking about Monty’s objectives and moti-
vations. As a game show host it is reasonable to assume that he
has a number of things to worry about:

1. He has to manage the game; that is, he has to ensure that
all the contestants have a reasonable hearing and that it fin-
ishes on time.

2. He has to entertain the audience; this is likely to mean,
among other things, that the contestants win cars reason-
ably often.

3. He is not likely to want to give away too many cars because
of the cost to his employers.

He may have other motivations but these will do for now.
In the light of these, how plausible are the assumptions above?
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Let us take them one by one:

Assumption 1: That Monty will always open a door. This
seems entirely reasonable. It would be a very odd game
show where there wasn’t a clear outcome at the end.

Assumption 2: That Monty never opens the door you have
chosen. It is not at all clear why this should be the case.
Why should Monty, after the usual banter associated with
game shows (‘Do you want to switch? Are you sure you
don’t want to switch?’), not simply open the door you have
chosen and tell you whether you have won or not? Indeed,
if he is running short of time, if he knows there is a car be-
hind the door and no-one has won for a while or he knows
there is a goat behind the door and a number of people have
won cars recently, is this not what he is likely to do?

Assumption 3: That Monty never opens the door with the
car behind it. This assumption is again rather dubious.?
Why shouldn’t Monty simply open a door and show you
the car, particularly if he is running out of time or wants
to engineer a particular outcome. In practice he is likely to
open the door you have chosen rather than the door with the
car behind it if you have lost and retain an air of mystery
over the location of the car, but the effect is the same.

Assumption 4: That the car is equally likely to be behind
any door. There is no reason to believe that a particular
door is likely to be preferred, so this seems reasonable.

Assumption 5: That, given a choice of doors, Monty
chooses at random. This assumption does not necessar-
ily hold — Monty may be inherently lazy or have a bad leg
and so have a tendency to open the available door nearest
to him — but it is easy to show that if all the other assump-
tions hold you cannot lose by switching, though you don’t
necessarily gain, so you might as well switch.

The key questionable assumptions, then, are 2 and 3 — that
Monty will never open the door you have chosen and will never
open the door with the car behind it — and it is these two assump-
tions that are at odds with our intuitive understanding of the way
game shows work. We all know that it is more fun, for the audi-
ence at least, if someone is conned out of a winning choice, so
there is always a suspicion that that is what Monty is trying to do.

We also know that if a game show is to be entertaining it has
to be varied. If Monty behaves too simplistically the game will
become predictable and so less entertaining. That leads on to a
rather deeper point — it is not at all clear that we can apply prob-
ability theory, at least in the traditional sense, to this problem at
all. Traditionally, probability theory applies to certain types of
repeatable event where the outcomes are random (in a sense we
need not dwell on here) but Monty Hall is not a random event. He
is not a coin to be tossed or a die to be thrown; he is a rational be-
ing with free will (or at least the will of his producers) and certain
objectives to achieve. Because a primary objective is to entertain,
his choices will not be random in the way that simple probability
theory assumes. His decisions will not be independent of each
other and will depend on numerous factors not included in our
mathematical model.

I have not carried out any detailed experiments to see exactly
how people’s reactions to the Monty Hall problem change if all
the assumptions are spelt out at the beginning — if people are told
before they answer that Monty will always show them another
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door, that he will never show them the car, and so on — but I sus-
pect that fewer people would get it wrong. There is, though, an-
other source that might help.

5 The Three Prisoners problem

The Three Prisoners problem appeared in Martin Gardner’s
Mathematical Games column in Scientific American in 1959 [2].
He put it like this:

Three men — A, B and C — were in separate cells un-

der sentence of death when the governor decided to

pardon one of them. He wrote their names on three

slips of paper, shook the slips in a hat, drew out one

of them and telephoned the warden, requesting that

the name of the lucky man be kept secret for several

days. Rumor of this reached prisoner A. When the

warden made his morning rounds, A tried to persuade

the warden to tell him who had been pardoned. The

warden refused.

‘Then tell me,” said A, ‘the name of one of the
others who will be executed. If B is to be pardoned,
give me C’s name. If C is to be pardoned, give me
B’s name. And if I'm to be pardoned, flip a coin to
decide whether to name B or C.’

‘But if you see me flip the coin,” replied the wary
warden, ‘you’ll know that you’re the one pardoned.
And if you see that I don’t flip a coin, you’ll know it’s
either you or the person I don’t name.’

‘Then don’t tell me now,” said A. ‘Tell me tomor-
row morning.’

The warden, who knew nothing about probability
theory, thought it over that night and decided that if
he followed the procedure suggested by A, it would
give A no help whatever in estimating his survival
chances. So next morning he told A that B was go-
ing to be executed.

After the warden left, A smiled to himself at the
warden’s stupidity. There were now only two equally
probable elements in what mathematicians like to
call the ‘sample space’ of the problem. Either C
would be pardoned or himself, so by all the laws of
conditional probability, his chances of survival had
gone up from 1/3to 1/2.

Did A reason correctly?

As we have already noted, this is mathematically equivalent
to the Monty Hall problem; the three prisoners correspond to the
three doors, being pardoned to the car, being executed to the goats
and the warden to Monty Hall. We can, therefore, solve it using
Bayes’ theorem exactly as above and if we make the same assump-
tions we get the same answer. A’s chances of being pardoned have
not changed but C’s chances have doubled.

So why, if it is essentially the same problem, did this problem
not appear on the front page of the New York Times?

There are all sorts of explanations, of course. The late 1950s
was a different era from the early 1990s; Scientific American was
a different sort of magazine from Parade, with a different sort of
readership; the problem appeared as part of a series of similar
problems; or it just might not have caught the public’s imagina-
tion in the same way. There are, though, more interesting po-
tential reasons. The first is that while the problems may be the



same mathematically, they are in different settings. And while
the assumptions made in the Monty Hall problem (whether made
explicit or not) conflict with our intuitive notions about how game
shows work, it seems more reasonable that A has not learnt any-
thing about his fate from the warden (and the focus here is on A’s
chances — which don’t change — whereas the Monty Hall problem
focusses on the unselected and unopened door, whose chances
do change). Furthermore, Gardner spells out all the assumptions
explicitly and makes sure that they are satisfied:

Assumption 1: The warden will always reveal a name.
This is somewhat implausible — it would seem that the war-
den is best off staying silent, but then there would be no
problem to solve.

Assumption 2: We are told that the warden is under in-
struction not to reveal who is to be pardoned. Strictly
speaking, this does not rule out the warden telling A his
outcome if he is to be executed — but then his chances of
being pardoned are 0.

Assumption 3: We are told that the warden knows who is
to be pardoned and is under instruction not to reveal who
it is.

Assumption 4: We are told that the name of the prisoner
to be pardoned is chosen by drawing a name out of a hat.

Assumption 5: We are told that, by a rather convoluted
mechanism, the warden chooses at random when he has a
choice.

In other words, whereas Monty is a free agent making de-
cisions according to his own motivations, Gardner so constrains
the warden that once he has decided to cooperate with A he is, in
effect, a random variable. Hence, not only are the assumptions
themselves inherently more plausible in this scenario, the appli-
cation of Bayes’ theorem is incontestable.

Interestingly, this problem appeared in an article devoted to
the ambiguities that can arise if problems are not unambiguously
specified. Gardner began his discussion of it with:

A wonderfully confusing little problem involving

three prisoners and a warden, even more difficult to

state unambiguously, is now making the rounds.*
And stating real problems unambiguously may involve mak-
ing assumptions that are approximations, implausible or simply
guesswork, so you have not necessarily solved the real problem
at all.

6 To switch or not to switch

I don’t mean ‘Don’t Switch’, of course, but ‘Don’t Necessarily
Switch’ isn’t as catchy a title. Whether or not you should switch
depends on what assumptions you make and the standard ones
made are not necessarily reasonable. Gardner and Selvin had
already appreciated the importance of stating problems so that
the assumptions about the probabilities are unambiguous but we
seem to have forgotten that in the Monty Hall problem. Having
spent much of my career trying to solve real problems using math-
ematics, I have found that the hardest part is not usually doing the
mathematics but finding out what assumptions you should make
and in problems involving chance that includes being clear what
the probabilities mean as well as what they are.

So if you ever find yourself in a game that looks like the Monty
Hall problem should you switch or not? Mathematics only helps

if you know how to estimate the probabilities and that is much
harder to do than simply making plausible assumptions. My best
advice is to look Monty in the eye and see if you can work out if
he is trying to con you or not, or maybe if he is genuinely trying
to give you another chance. Think about how many cars he has
given away so far and assess whether Monty might be trying to
encourage more winners or more losers. How long is there to go
before the end of the game, and is Monty trying to spin it out or
bring it to a halt? When you have decided that you can do all
the maths. In practice, you should switch unless you think Monty
is trying to con you out of a car, because in most cases you are
no worse off by switching and you may gain, but how can you
know? There are ways of using probability theory to tackle prob-
lems like this that are very different from the way the subject is
usually taught — but that is a topic for another article.
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Notes

1. For what follows, see http://www.marilynvossavant.
com/articles/gameshow.html (accessed 11 November
2014).

2. Available at http://tinyurl.com/NYTimesMH (accessed
16 November 2014).

3. There is a prior assumption here that Monty knows which
door the car is behind, which is not necessarily true. If not,
there are more options to consider but Bayes’ theorem shows
easily enough that both unopened doors have probability 1/2,
so it makes no difference whether you switch or not. To keep
things simple, therefore, we will assume he does know.

4. My emphasis.
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