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Abstract 

This paper describes an approach that enables an automated multi-sensor fusion system to coordinate the tasking of 

sensors while considering the extent to which these sensors do (and do not) behave in the way that their specifications 

state that they will. The potential for a sensor’s performance to depart from its specification currently forces the 

designer of a fusion system to either use the sensors to less than their full potential or be prone to difficulties when 

sensors fail to perform as they should. In this paper, a Sequential Monte Carlo (SMC) sampler is used as a state-of-the-

art solution to the problem of performing the online learning of how a sensor’s diagnostic signals (e.g. a video camera’s 

low contrast flag) can be used to predict when sensor performance is degraded (e.g. due to fog). Simulated scenarios are 

used to validate the operation of the SMC sampler. It is demonstrated that the proposed algorithm can learn 

automatically, for example, that sensors only detect targets in their field of view. Discussion highlights that the key 

benefits would be that the system would only task sensors to do tasks that they can perform and that the system would 

learn when to trust in the information provided by each of the sensors.

1. Introduction 

Sensor networks are now fundamental to gathering data that can be used for the protection of critical national 

infrastructure or to ensure city centres are safe for the population living there (Rouse et al. 2010). Recent development 

of cheap sensors and networking enabling technology has led to the current position that the protection of land based, 

high-value assets such as critical national infrastructure is conducted by the deployment of a multitude of sensors 

around the asset’s perimeter. These sensors feed data back to a central hub for inspection by an operator. The sheer 

volume of data collected can cause the operator to suffer data deluge. Towards preventing this, multisensory data fusion 

systems have been developed to coordinate sensor management, tasking and automated analysis of the data to provide 

alerts to feed to the operator (Lane and Copsey 2012). 

 

In hostile environments and over long deployments, factors such as poor weather can cause the sensors to 

malfunction or even fail. This leads to erroneous or even no data being sent to the data fusion system for analysis, with 

the resulting consequence of the creation of incorrect situational awareness pictures. Methodologies have been 

developed to detect and ameliorate the impact of such faults within sensor networks (Zahedi et al. 2008) but these 

require prior knowledge of the type of failings that can occur in order to be useful. The present work is motivated by the 

need to develop mitigation techniques for use against unforeseen circumstances, resulting in the sensor behaving in a 

manner other than what its specifications said it would.  

 

This work assumes that the data fusion technology necessary to provide the majority of the functionality of a multi 

sensor fusion system already exists. Specifically, it is assumed that technology exists to associate and fuse streams of 

data coming from multiple sensors (of disparate types) and that technology exists to automate the tasking of assets to 

maximise the chance that an information goal can be met. These technologies have been demonstrated in previous UK 

MoD funded research, for example, in the Persistent Wide Area Surveillance (PWAS) project (Rouse et al. 2010) and 

the Sensor Information Processing And Management (SIPAM) projects respectively (Strens et al. 2007).   

 

The aim here is to augment the state-of-the-art with algorithms that address a problem that plagues fusion systems 

built on standard technologies that have been demonstrated in projects such as PWAS and SIPAM. The specific 

problem is that sensors don’t always behave in the way that they say they will. This forces the designer of a fusion 

system to either use the sensors to less than their full potential or be prone to difficulties when sensors fail to perform as 

they should. Technology developed to address this issue would enable the system to learn how fluctuations in the 

environment affect sensors’ behaviour. Key benefits would then be that the system would only task sensors to do tasks 

they can perform and that the system would learn when to trust in the information provided by them. 
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The challenge is to develop technology that exploits an ever-increasing record of historic data to improve an 

understanding of the current and future performance of the sensors providing data to a fusion system. Specifically, the 

aim is to understand when, as a function of its environment, a sensor performs according to its published specification, 

which we anticipate to be optimistic in some environments, and when it is not, meaning we should make use of a 

pessimistic specification of sensor performance. 

 

Understanding future sensor performance enables the fusion system to task sensors with an improved understanding 

of their likely performance. Put simply, there is no point in tasking a sensor to detect a target if the current environment 

is such that the sensor will never be able to detect the target. If the system tasking sensors understands their 

performance, then it can make best use of this sensor resource and avoid being surprised by sensors’ future 

performance. 

 

Understanding current sensor performance enables the situation awareness picture to be compiled in a way that 

avoids using an optimistic model when it is inappropriate to do so. Such inappropriate use of an optimistic model can 

result in pathological behaviour. For example, if the fusion system makes optimistic assumptions about detection 

performance, track failure can result since the fusion system assumes that a lack of detections actually caused by some 

environmental factor must be caused by the object not being present. While one can always use a pessimistic model of 

detection performance to address this issue, in environmental conditions where the optimistic model is applicable the 

accuracy of a system is reduced. 

 

The relationship between the diagnostic signals provided by a sensor and whether that sensor performs in accordance 

with its specification could be described with a truth table which considers all combinations of all diagnostic signals. 

However, the number of entries in that truth table would grow rapidly with the number of diagnostic signals. To avoid 

the associated computational expense, we propose to consider smaller truth tables that only consider a subset of the 

available diagnostic signals. We therefore need to search the space of such smaller truth tables as the data arrives and so 

adaptively learn both the content of the truth table but also the diagnostic signals that are relevant to sensor 

performance.  

 

The problem of estimating the (smaller) truth table as data arrives is an example of online learning. Online learning 

has historically proven to be a difficult problem to solve in a way that combines computational efficiency with 

asymptotic accuracy. However, Sequential Monte Carlo (SMC) samplers offer a candidate solution that can combine 

efficiency with accuracy. We therefore adopt such SMC samplers here. Note that SMC samplers are a special case of 

SMC methods. Particle filters are another example of SMC methods and are applicable to situations where we are 

processing a data stream to estimate a time-varying state. Here, in contrast, the truth table is assumed fixed. Particle 

filters are therefore not appropriate. 

 

The paper is organised as follows: Section 2 describes the SMC sampler in the context of online learning. Section 3 

describes the context in which we consider the SMC sampler to operate. Section 4 then describes two scenarios and 

presents results. These results are discussed in section 5 ahead of conclusions being drawn in section 6. 

2. Sequential Monte Carlo samplers 

As already explained, the solution described herein is based on Sequential Monte Carlo (SMC) samplers. This section 

describes this solution and provides pseudo-code to aid future implementation by others. 

 

2.1. Statistical Model Definition 
At the t

th
 time step when a target is being tracked, we receive a binary variable, dt, stating whether or not a detection 

event has occurred and a list of Nb binary variables indicative of the system state, 𝑏𝑡
1:𝑁𝑏. We assume we have prior 

knowledge detailing possible different performances for that sensor, perhaps supplied from the manufacture’s data 

sheet. For example P(dt = 1|M) where M ∈ {M1;M2}, i.e. there are two models with different probabilities of detection, 

one more pessimistic than the other.   

We assume the model is a function of the binary variables such that M = M(𝑏𝑡
1:𝑁𝑏|Ө) where Ө parameterises the 

mapping. While the approach generalises to multiple sensors, this discussion considers a single sensor for ease of 

exposition; the approach has utility when multiple sensors are present, but the processing is inherently parallel across 

the sensors. 
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We wish to exploit a stream of values for dt and 𝑏𝑡
1:𝑁𝑏 to learn M(𝑏𝑡

1:𝑁𝑏|Ө), i.e. to perform online learning of Ө from 

the stream of d1:t. If we knew Ө, we could predict the probability of detection from 𝑏𝑡
1:𝑁𝑏  and so make best use of 

sensors in both the compilation of a situational awareness picture and the tasking of sensors. 

 

We assume that Ө is a look-up table into M, indexed by a subset (the content of which will be estimated) of size NS, 

of the binary variables such that there are 2𝑁𝑆  different values that the combination of the subset of variables could 

take. Since there are two models for M, the look up table can be considered to be a binary vector stating whether or not 

M1 is active for each combination of input variables. At time, t, we assume that we have Өt as a hypothesis for Ө. To 

apply an SMC sampler (see below), we need to define the distribution we wish to estimate. We choose
1
 to define the 

marginal target distribution at time, t, as that distribution of interest: 

 
 

𝜋𝑡(𝜃𝑡) = 𝑝(𝜃𝑡, 𝑑1:𝑡|𝑏1:𝑡
1:𝑁𝑏) = 𝑝(𝜃𝑡)𝑝( 𝑑1:𝑡|𝑏1:𝑡

1:𝑁𝑏 , 𝜃𝑡)                    (1) 

 
where we can define the prior on Ө as:  

 

𝑝(𝜃) = 𝑃𝑜(𝑁𝑆; 𝜆)
1

22𝑁𝑆
                                                                               (2)      

 
where λ is the expected number of binary variables that are relevant and Po(N;λ) is a Poisson distribution on N 

parameterised by a rate of λ. For clarity, a priori, we assume that the size of the subset, Ns, is Poisson distributed (as a 

convenient alternative to it being binomially distributed) and each of the look up tables of size Ns is equally likely: each 

truth table of size Ns has 2𝑁𝑆entries, each of which relates to a binary variable, such that there are 22𝑁𝑆   different truth 

tables with size Ns. The likelihood is then: 
 

𝑝( 𝑑1:𝑡|𝑏1:𝑡
1:𝑁𝑏 , 𝜃𝑡) = ∏ 𝑝 (𝑑𝑡′|𝑀(𝑏𝑡′

1:𝑁𝑏|𝜃𝑡
𝑖))

𝑡

𝑡′=1

                                       (3) 

Note that (3) requires a calculation that involves the entire historic data record and the entire history of binary 

variables. 

 
 

2.2. SMC Sampler 
We provide a brief summary of the operation of a Sequential Monte-Carlo (SMC) sampler being used for online 

learning. A more detailed description is available in (Maskell. 2012).  

In common with a particle filter, the SMC sampler iteratively draws samples from a proposal distribution such that 

each sample can be considered to be a trajectory over the iterations of the algorithm. We then use importance sampling 

to enable the current samples to become a weighted approximation to samples from a distribution of interest, which here 

is 𝜋𝑡(𝜃𝑡). To achieve this, we define a target distribution for the trajectory associated with a sample as the iterations 

proceed, as: 

 

    𝜋(𝜃1:𝑡) = 𝜋𝑡(𝜃𝑡) ∏ 𝐿𝑡
𝑡′=2 ( 𝜃𝑡′−1|, 𝜃𝑡′)                                              (4) 

 

where here we make the simplistic assumption that 𝐿(𝜃𝑡−1|𝜃𝑡) =t-1(𝜃𝑡−1). The definition of the target distribution 

for the tractor is the key concept in SMC samplers which gives rise to the property that the current samples can be used 

to approximate 𝜋𝑡(𝜃𝑡)  We then assume the existence of a proposal distribution 𝑞(𝜃𝑡|𝜃𝑡−1)  such that:  
 

𝑞(𝜃1:𝑡) = 𝑞(𝜃1) ∏ 𝑞

𝑡

𝑡′=2

( 𝜃𝑡′|, 𝜃𝑡′−1)                                              (5) 

 

                                                           
1
 Other choices of target distribution, eg the posterior, would be possible. However, using the posterior specifically 

would demand the calculation of an intractable integral. We therefore target a scaled version of the posterior (as is, for 

example, standard (albeit often implicit) practice in particle filtering). 
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The specific form of 𝑞(𝜃𝑡|𝜃𝑡−1) is that it samples whether to keep the set of binary variables considered by the truth 

table the same, whether to reduce the number by one (unless there is only one binary variable in the truth table) or 

whether to increase it by one (unless all the binary variables are in the truth table). If the truth table shrinks, the binary 

variable to remove is chosen at random from those present in the truth table and each element in the new truth table is 

sampled uniformly from the (two) associated elements in the old truth table. If the truth table grows, the new binary 

variable is chosen at random from those not present in the truth table and each element is taken to be the same as the 

associated element in the old truth table. Whatever the size of the new truth table, there is then a small probability that 

each element in the truth table is toggled: this acts much like a mutation operation in a genetic algorithm.  

 
The definitions above enable the recursive definition of importance sampling weights: 

 
 

𝜔𝑡 =
𝜋(𝜃1:𝑡)

𝑞(𝜃1:𝑡)
                                                                                   (6) 

 

= 𝜔𝑡−1

𝜋𝑡(𝜃𝑡)

𝑞(𝜃𝑡|𝜃𝑡−1)
                                                                  (7) 

 
 

It would be possible to optimise the choice of proposal distribution and L-kernel though this is not considered here. 

 

2.3. SMC algorithm pseudo-code 
So, after initialisation (which just consists of initialising

2
 the truth tables with some initial estimates and initialising 

the particle’s weights as uniform), the algorithm proceeds as follows at the t
th

 iteration: 

 

• Add the new datum, dt, to the historic data record to produce d1:t; 

• Add the new binary variables, 𝑏𝑡
1:𝑁𝑏, to the historic record of binary variables to produce 𝑏1:𝑡

1:𝑁𝑏; 
• For all of the N samples, exemplified by the i

th
 sample: 

- Sample 𝜃𝑡
𝑖~𝑞(𝜃𝑡|𝜃𝑡−1

𝑖 ); 

- Evaluate 𝑞(𝜃𝑡|𝜃𝑡−1
𝑖 );  

- Evaluate 𝜋𝑡(𝜃𝑡
𝑖) using (1); 

- Calculate 𝑤𝑡
𝑖 using (7); 

• Normalise the weights to produce {𝜔̅𝑡
𝑖 }

𝑖=1

𝑁
; 

• Given the current values for 𝑏𝑡
1:𝑁𝑏, output a weighted estimate of the Probability of detection as 

∑ 𝜔̅𝑡
𝑖 𝑝 (𝑑𝑡|𝑀 (𝑏𝑡

1:𝑁𝑏|𝜃𝑡))𝑁
𝑖=1 ; 

• If the effective sample size drops below a threshold, resample. 

3. Algorithmic Context  

We now describe how an SMC sampler could provide the envisaged fault detection functionality. Figure 1 shows the 

architecture of a possible future multi-sensor fusion system for asset protection. Each component’s functionality can be 

described as follows: 

 

 Sensors: The sensors are assumed to accept tasking requests and provide target declarations as well as 

other information (e.g. diagnostic health information). Note that we assume a system with enough spatial 

redundancy that an object could be tracked by multiple sensors so that it is apparent whether or not an 

individual sensor is detecting the object. This is the same level of redundancy that a prudent system designer 

would employ to ensure that there is not complete reliance on any one sensor.  

                                                           
2
 In the results that follow, all SMC samplers were initialised to think that a single signal (alone) dictates the correct 

model to use. In fact, the specific signal chosen does not have any such correlation with detection performance. 
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 Fusion Engine: This ingests the sensor data, transforms to information (e.g. detections to tracks) and 

fuses these to produce a situation awareness picture. It also accepts an input from the SMC Sampler, which 

tells the fusion engine whether each sensor appears to currently be behaving according to its published 

specification, M1, or M2 (and thus whether the optimistic or pessimistic view of the sensor should be adopted). 

As well as the situational awareness picture, diagnostic information is also output (for example conflicts 

between different sensor declarations – see section 4 for examples of such outputs). It is assumed that any 

online calibration (e.g. adjustment for where North and Up are for each sensor) is a subsystem employing 

mature technology within this fusion engine.  

  Condition Monitoring: The diagnostic output from the fusion engine is processed and converted 

into a set of binary variables via suitable (potentially adaptive) thresholding. At the time of each set of track-

updates, this component provides a set of binary statements relating to the condition of the sensors and whether 

each sensor detects any of the tracked targets. Examples of diagnostic signals are given in section 4. 

 SMC Sampler: The SMC sampler processes the binary variables and the detection data to estimate 

the truth tables. 

 Sensor Scheduler: This component converts the user-articulated goals into candidate future 

schedules for tasking the sensors. It optimises the choice of schedule and constituent tasking based on both the 

current situational awareness picture and the current perception (provided by the SMC sampler) as to which 

sensors are behaving according to their published specification. Such scheduling is important if the fusion 

system is to exploit the heterogeneity of sensing modalities in the sensors: the sensors are assumed to be 

unaware of which other sensors are present and so, without tasking from the scheduler, are unable to 

autonomously optimise their behaviour to provide declarations that are have most utility when fused with other 

sensor declarations. 

 

The SMC sampler is the core of the novel additions to the multi sensor fusion system. This component resolves 

conflict between the summaries with which it has ever been supplied to infer a consistent mapping of binary variables to 

whether the sensor is behaving according to its published specification. 

 

 
 

FIGURE 1.  Architecture for the multi-sensor fusion system considered in the scenario. 
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Note that three control loops are present in figure 1, two of which result from the novel inclusion of the SMC 

Component (with the other being the mature process of optimising sensor tasking in response to the current situational 

awareness picture
3
): 

 

• As a result of its previous experience, the SMC sampler detects that the environment is currently such that some 

sensors are not likely to perform according to their published specification. This changes the level of trust that the 

fusion engine places on data (or lack of it) from the associated sensors. This empowers the system with an ability to 

learn when to trust in the information provided by sensors. 

• As a result of its previous experience gained from Condition Monitoring, the SMC sampler again detects that the 

environment is currently such that some sensors are not likely to perform according to their published specification. 

This can also change the confidence that the scheduler has in a sensor’s ability to successfully respond to a given 

tasking. This empowers the wider system with an ability to only task sensors with tasks that they can actually 

successfully undertake. 

4. Simulated System Performance 

We consider scenarios based on the geometry shown in figure 2. The sensors have already been tasked and are 

operating against those tasks. The tasks involve staring at a fixed area of interest and declaring any detections made. 

Three sensors have been assigned. Sensor_1 and Sensor_3 contain electro-optic (EO) cameras with a field of view as 

indicated by the yellow areas in figure 2. Sensor_2 contains a radar which is constantly monitoring the region described 

in blue. Sensor_2 gives wide area coverage with accurate location details. Sensor_1 and Sensor_3 can provide further 

contextual information if required but are currently tasked to declare all detections. This geometry allows the fusion 

engine to cross correlate sensor declarations to build a richer understanding of what is happening in the area being 

monitored. Sensor_1 and Sensor_3 have overlapping fields of view to allow hand off of tracked objects from one field 

of view to the other if necessary. 

 

 
 

FIGURE 2. Schematic of the deployment of three sensors, showing the overlapping coverage from their respective 

fields of view and the trajectory of a target moving across the sensor’s fields of view.  

 

In each of two scenarios, an object then moves as shown by the red line in figure 2. The diagnostic information that 

populates the binary variables to be processed is as follows (where we denote data relevant to the radar, camera-1 and 

camera-2 with suffixes of “r”, “c1” and “c2” respectively): 

 

 Detection information (i.e. is an object detected), denoted “detected-r”, “detected-c1” and “detected-c2”. 

 Diagnostic health information provided by sensors, denoted “alive-msgs-c”, “alive-msgs-r”, “camera-gain” 

(whether it is within defined limits deemed sensible), “histogram” (whether image saturation is occurring), 

“velocity-r” (whether the estimated velocity is reasonable for the target type in question) and “error-r 

(whether an internal error has been detected) 

                                                           
3
 A potentially interesting extension of the mature technology associated with this control loop would be to schedule 

the use of sensors to detect, track and identify targets (as is already well understood), but also task sensors in a way that 

enables the system to better understand the performance of its constituent sensors as a function of their diagnostic 

outputs. 
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 Diagnostic information derived by the fusion engine: 

o Whether the track is in the sensor’s field of view (ie whether the fusion engine perceives that the 

target is likely to be detected), denoted “fov-r”, “fov-c1” and “fov-c2”; 

o Whether there is a timing conflict detected (ie whether synchronisation errors have been detected), 

denoted “t-conflict-r”, “t-conflict-c1” and “t-conflict-c2”; 

o Whether there is a position conflict detected (ie whether the fusion engine deems a sensor to be 

providing information about the position of a target that is inconsistent with the position reported by 

other sensors), denoted “p-conflict”. 

 

Timing and Position conflict information reflects whether declarations that should correlate are actually in agreement 

or conflict with one another. Two sensor models are considered. One in an optimistic model (with an assumed 

probability of detection of 80%) and the other is a pessimistic model (with an assumed probability of detection of 20%). 

 

Scenario 1 

Scenario 1 considers a target moving into the field of view of the radar and then moving through the field of view of the 

two cameras. For one time-step the target is assumed to move outside the field of view of the radar and is not detected 

at that time-step. The input data for scenario 1 is shown in Figure 3. 

 

Scenario 2 

Scenario 2 is similar to scenario 1, except that the data indicates that the target is never in the field of view for camera 2 

(despite it being detected! i.e. it is assumed that either the sensor has given a false detection or the fusion engine has 

made a mistake) and the radar detects the target at all time steps. This scenario aims to emulate the often encountered 

situation (eg due to misunderstandings between component suppliers in a complex system or due to faults present in 

that complex system) where there is a mismatch between what one might expect to observe and the correlations that 

actually occur. The input data for scenario 2 is shown in Figure 4. 

 

 
FIGURE 3: Input Data for scenario 1. 
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FIGURE 4: Input Data for scenario 2. 

 

SMC Sampler Results 

All results obtained using the SMC sampler are based on an SMC sampler with 100 particles. To give some intuition as 

to computational cost, processing the data associated with scenario 1 (which consists of three sensors and 398 time-

steps) took approximately 77 seconds on an Intel i5 2.6 GHz PC running MATLAB 2012b. No optimisation for speed 

had been undertaken. 

 

 
FIGURE 5: Probability that SMC sampler perceives that each binary variable is relevant to determining the radar’s 

performance for scenario 1. 
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FIGURE 6: Probability that SMC sampler uses each binary variable is relevant to determining camera-1’s performance 

in scenario 2. 

 

To exemplify the results we obtain, figure 5 shows the probability that the SMC sampler uses each of the binary 

variables for the radar in scenario 1 and figure 6 shows the probability that the SMC sampler uses each of the binary 

variables for camera 1 in scenario 2. 
 

5. Discussion 

 

As should be apparent from figure 3, in scenario 1, the data indicates that detections from the radar occur when the 

target is in the radar’s field of view (ie when the FoV-r variable is equal to 1). Figure 5 indicates that, up to 

approximately half way through the simulation, the SMC sampler has identified that all variables are unlikely to be 

having an influence on detection performance. There is limited (or no) evidence either in favour or against the 

hypothesis that the sensor’s performance is being affected by the variables. This gives rise to the somewhat “noisy” 

outputs. Once the target exits the radar’s field of view and is not detected at that point in time, the SMC sampler is able 

to detect the correlation between the target being in the field of view and it being detected: the system has learned that a 

target needs to be in the field of view of the radar for it to be detected. 

 

In scenario 2, figure 4 illustrates that detections from camera 2 occur despite the field of view variable indicating that 

the target is outside the field of view. Figure 6 indicates that (once camera 2 starts detecting the target) the SMC 

sampler is able to correctly identify that the field of view for camera 1 is influencing camera 1’s ability to detect targets. 

It is perhaps interesting that further analysis (not detailed here for reasons of brevity) indicates that the geometry of the 

scenario is such that the fields of view overlap and so, if both fields of view signals are “correct”, the SMC sampler 

infers that both cameras’ fields of view are important to determining both cameras’ performance. 
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6. Conclusions 
 

Two scenarios were considered in order to assess the SMC sampler performance. Based on these scenarios, we draw 

the following conclusions: 

 

• A solution has been developed to the problem of learning how the environment affects the performance of sensors. 

The solution is based on SMC samplers configured to perform online learning of how binary variables influence 

detection performance. 

• Analysis indicates that the internal signals generated are promising.  

 

Future research will focus on enhancing the SMC sampler described here (eg to enable the SMC sampler’s inputs to 

include continuous variables representing sensors’ health, to use sufficient statistics to reduce the data storage 

requirements and to use truth-trees to succinctly represent truth tables within a redundant structure). It is also of interest 

to use alternative approaches to anomaly detection, e.g. based on Bayesian surprise (Itti L & Baldi P. 2006) and to 

embed the SMC sampler within an instantiation of the wider system described in section 3.  
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