
network
regression model, which requires no specific experimentation and
relies on the tube’s characteristics, such as material type and
wall thickness. However, this needs an extensive set of training
data including observed times to near
saturation, in order to estimate regres-
sion parameters well and avoid extrap-
olating to accommodate new materials
and dimensions. The second approach
is based on fitting model (4) to IWG data
collected for several days, to determine the parameters µ and ρ,
and then solving equation (5) to evaluate t∗. Although this ap-
proach requires some specific experimentation for the new lag-
ging, it needs no training data and readily accommodates new
materials and dimensions.

As you might imagine, I was pretty pleased with the overall
success of this analysis. Although I readily admit that some of
my research fails miserably, this was a satisfying outcome. Per-
haps we should consider the matter of publication bias another
day. Just like the variety of unexpected challenges that spring up
in my profession, April’s issue of Mathematics Today contains a
similarly diverse and exciting range of feature articles, which I
hope will be of considerable interest and inspire you to put finger
to keypad. For sure, the content reveals just how relevant mathe-
matics is to everybody and leaves us in no doubt about its ubiquity
and importance. Of course, maths is good fun too.

In particular, we have two Maths Matters papers that should
be compulsory reading for everyone. The entertaining topic of
Small Worlds by Design discusses clinking glasses at parties with

an underlying discrete optimisation
problem that affects us all. Similarly, A
Short Monograph on Exposition and the
Emotive Nature of Research and Pub-
lishing offers some astute observations
with a slight element of provocation for

our amusement. We also have an excellent article on Generalised
Functions and Differential Equations, along with a comparison
of traditional and IT-based statistics modules in higher education,
and the ever-popular Historical Notes.

Anonymous authorship of Urban Maths articles generally
ceases after this issue, though the feature will continue under in-
vited authorship. It is with great pleasure and gratitude that I can
now reveal the identity of the legendary ‘A. Townie’ who con-
tributed so many of these excellent articles in past issues. This is
former Vice President (Communications), Dr Alan Stevens, ably
assisted by Rob Ashmore and Ellis-Fauve Cresswell, so thank you
all. I would also like to express my sincere appreciation to the pro-
lific author of the A Doctor Writes articles, who modestly prefers
to remain incognito. Happy reading!

David F. Percy CMath CSci FIMA

Editorial

O ne of the most enjoyable aspects of being a mathe-
matician in academia is encountering diverse and ex-
citing challenges. One such incident occurred recently

when a refrigeration engineer brought two tubes into my office
and plonked them on my desk. ‘Can you model intrinsic weight
gain and predict time to saturation?’ she asked. As so often hap-
pens, my mouth uttered ‘Yes’ with little input from my brain and
despite my ignorance.

These right annular cylinders were 127 mm long and sealed
at both ends, with external diameter 124 mm and bore 70 mm,
as illustrated in Figure 1. One of them rattled ominously, though
my visitor explained that they were sections of pipe lagging and
that the noise was caused by a desiccant. Cold liquid refrigerants
pass through the pipes, with the adverse effect of causing costly
condensation damage. The engineer had executed the following
well designed experiment, which was repeated many times for
tubes of various materials and dimensions, in order to address
this problem.

 

 

Figure 1: Refrigeration pipe lagging, test tube and blank tube.

Both tubes are initially dry and then placed in a humid envi-
ronment for several weeks during which they are weighed regu-
larly. The intrinsic weight gain (IWG) at any time point is the dif-
ference between the masses of the test tube (with desiccant) and
the blank tube (without desiccant). If the tubes were saturated,
IWG would increase linearly with time. However, the saturation
point for this experiment occurs only asymptotically, so we con-
sider approximate saturation that corresponds to near linearity of
IWG increase.

Our aim is to model and predict approximate saturation points
for these and other tubes, ideally without the need for further
experimentation. To develop a mathematical model for IWG
(grams), define parameter ρ as the rate (grams per day) of inflow
to a tube when dry, parameter µ as the mass (grams) of water
that the tube holds when saturated and function w(t) as the mass
(grams) of water in the tube at time t (days).

For a test tube at time t, the rate of outflow to the internal des-
iccant is ρw(t)/µ and the rate of inflow from the external envi-
ronment is ρ {1− w(t)/µ}. Hence, the rate of water absorption
by the tube (inflow minus outflow) is

w′(t) = ρ

{
1− 2w(t)

µ

}

and we can solve this linear, first-order ordinary differential equa-
tion to give

w(t) =
µ

2

(
1− e−2ρt/µ

)
. (1)

The mass of water in the desiccant at time t is equal to the accu-
mulated outflow

∫ t

0

ρw(s)

µ
ds =

ρt

2
− µ

4

(
1− e−2ρt/µ

)
. (2)

For a blank tube at time t, the rate of water absorption by the
tube (inflow only) is

w′(t) = ρ

{
1− w(t)

µ

}
,

which we can solve to give

w(t) = µ
(
1− e−ρt/µ

)
. (3)

The IWG f(t) at time t is then determined by adding equa-
tions (1) and (2) and subtracting equation (3), which simplifies to
give

f(t) =
ρt

2
− µ

4

(
3− 4e−ρt/µ + e−2ρt/µ

)
. (4)

Note that f(0) = 0 and limt→∞ f(t)/g(t) = 1 where g(t) =
ρt/2 − 3µ/4 is a linear function of time as expected. Now to
check whether this theory has any practical value. My colleague
presented me with many data sets and I fitted model (4) to some of
these, using the method of least squares for convenience. Figure 2
displays one of the scatter plots with fitted curve and asymptotic
line.


ρ

Figure 2: Sample IWG data with fitted curve f(t) and
asymptotic line g(t).

The next task is to predict the approximate time to satura-
tion, t∗. A reasonable, dimensionless measure of asymptotic be-
haviour at any time point t is the relative discrepancy

d(t) =
f(t)− g(t)

g(t)

and another might be the second logarithmic derivative of f(t).
It is a challenging exercise to prove that d(t) is a strictly decreas-
ing function of time, in which case we can determine the time to
near saturation by solving d(t) = δ for specified tolerance δ. This
leads to the nonlinear equation

µe−ρt/µ

2ρt− 3µ

(
4− e−ρt/µ

)
= δ, (5)

which we solve numerically for t to evaluate t∗. Setting µ =
0.1667 and ρ = 0.0085 as above and δ = 0.05 arbitrarily, we
obtain a predicted time to near saturation of t∗ = 62 days for the
experiment displayed in Figure 2.

Finally, there are two principal methods for predicting the
approximate time to saturation for a specific lagging that is to
be used in future applications. The first approach is based on a
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