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Abstract

C onnecting all the members of a large group involves
many exchanges; think of it as clinking glasses at a so-
cial gathering. Allowing second-hand exchanges/clinks

where the group splits into subgroups who clink glasses, and
then representatives from each subgroup clink with each other –
second-hand clinking – can decrease the number of clinks. This
paper finds the optimal number of subgroups necessary to min-
imise the total number of clinks. It also looks at what is optimal
if there is third and higher level clinking. Examples are given of
such problems arising in parallel computer systems, social media,
communication systems, and sports tournaments.

1 Introduction

Social events, such as parties, often promote interpersonal contact
by an initial round of mutual glass-clinking. One clink between
each individual of a group of n means n(n − 1)/2 clinks in all,
quite feasible in small settings, but impossible in large (n ≈ 50
or so).

In Figure 1,

C1(n) =
n(n− 1)

2
C1(12) = 66 total connections.

One way to accomplish such contact is by accepting second-
hand clinking: split the whole group of n into n(1) roughly
equal size subgroups; promote first-hand clinking within each

Figure 1: Single community (one world), n = 12.

subgroup. So n(1) denotes the number of these first-level sub-
groups while there are n individuals in total. Select a single
member of each first-level subgroup to represent that subgroup
in another small, representative, subgroup; and let the represen-
tatives in the latter group exchange clinks. In this way each in-
dividual clinks/connects with each other individual with a much
smaller maximum number of clinks, C2(n, n(1)). What is the
optimal size of the first-hand subgroups/communities �n/n(1)�
or �n/n(1)�+1 (where �x� is the largest integer less than or equal
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to x) so as to minimise the total number of clinks/connections?
This is, in effect, designing a small world, a network with a small
number of connections between any two individuals. For exam-
ple one group of 12 people would result in 66 clinks; splitting the
12 people into four communities with three people each results in
C2(12, 4) = 4 × 3 + 6 = 18 total connections. This compares
with C2(12, 3) = 15, C2(12, 2) = 31 and C1(12) = 66. This
illustrates the beneficial effect of wise group/subgroup design.

Figure 2: 12 members with second-hand clinking.

In Figure 2, C2(12, 4) = 4 × 3 + 6 = 18 total connections
with four groups of three people each.

Before addressing the above simplistic question, observe that
the general situation described represents various operational sce-
narios involving connections and communications. One example
occurs when deciding how to connect central processing units
(CPUs) in a parallel processor computer. Is it necessary to con-
nect all units together or can we collect them in clusters and then
connect between the representatives of the different clusters?

On a more social level, how many friends should a group on
Facebook have so as to be able to spread messages throughout the
group? All members of the group are split into subgroups where
they make friends with everyone in the subgroup. One from each
group then is made the representative for the group and the rep-
resentatives become friends with each other.

A different situation in which a similar problem occurs is the
setting of ATM interchange fees by banks in the same ATM net-
work. Each year, banks meet to set fees for ATM transactions
when customers of one bank uses a different bank’s ATM. Meet-
ings to set the fee can be decreased by having groups of banks de-
ciding on their individual interchange fees and then electing a rep-
resentative to meet with representatives from other groups. An-
other example occurs in organisations which have local branches,
regional groups and a national group. The local group ‘clinks
glasses’ by discussing and deciding matters. They elect represen-
tatives for the next level who convey the views of the local group
and so on upwards. Examples range from church organisations to
political parties. Finally it is also the structure of many sporting
tournaments where the clinking is when teams play each other
and the winner of the group goes up a level to play other winners.
So in the end the winner will have ‘beaten’ every other team if
only sometimes at second or third hand. We will discuss later
the more common variant of this where two representatives – the
winner and runner-up of the group go forward to the next level.

2 Optimal two-tier grouping

Divide n individuals into n(1) subgroups of (approximately)
equal size. Each member of each subgroup then connects
(‘clinks’) once with each fellow subgroup member. Then a sin-
gle member representative of each subgroup joins a higher level
group and all members of that group connect (‘clink’). What is
the (approximate) number, n#(1) , that minimises the total num-
ber of connections? Putting C2(n, n(1)) for the total number of
connections/clinks as described above,

C2(n, n(1)) ∼=

n(1)

[(
n

n(1)

)(
n

n(1)
− 1

)]
1

2︸ ︷︷ ︸
Within

+n(1) (n(1)− 1)
1

2︸ ︷︷ ︸
Between

. (1)

Approximate by neglecting the distinction between n/n(1) − 1
and n/n(1) and between n(1) and n(1)− 1:

C#
2 (n, n(1)) ≈ 1

2

[
n2

n(1)
+ n2(1)

]
. (2)

Differentiate (2) on n(1):

d
dn(1)

C#
2 (n, n(1)) = −1

2

n2

(n(1))
2 + n(1). (3)

A second differentiation verifies convexity, so the (near) minimis-
ing value of the primary subgroup number is

n#(1) =
n2/3

21/3
≡ L2n

p0(2). (4)

Although (2) varies from (1) by [n + n(1)]/2, the n(1) that
maximises (1) is very similar to (4) when n is less than 100. Of
course the value of n#(1) is not likely to be an integer that divides
the total, n, into equal-sized integer-valued subcommunities, so
we adjust to whatever of the nearest integers give the minimum
value. Numerical exploration for limited n (e.g., n = 50) shows
that such a procedure gives very nearly the minimum-connection
allocation. The approximate optimal size of each of the first-tier
communities is

g2(1) =
n(

n2/3

21/3

) = (2n)1/3. (5)

With the two-stage grouping in place, the total number of con-
nections/clinks, both first and second level, is approximately

C#
2

(
n, n# (1)

)
=

3

25/3
n4/3 =

3

2
n#(1)

2 ≡ K2n
pC(2). (6)

Note that
K2 =

1

2

[
1

L2
+ L2

2

]
. (7)

We take R to be the actual minimum using integer numbers in
each subgroup. Insistence on direct connections/clinks between
all participants results in the number of connections being about
C#

1 (n) = n2/2; so by allowing second-level connection (through
a representative) to count the system requires a fraction F less
clinking where

F =
C#

2

(
n, n#(1)

)

C#
1 (n)

≈

3

25/3
n4/3

n2/2
= 3

1

22/3n2/3
=

3

2

1

n#(1)
.

(8)
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Table 1 displays the number of clinks required for various sub-
groups of a total population allowing for the adjustment to get
integer values. If n = 50 only about 12% as many connections
are required in the two-level small world as in the one large world
case.

3 General recursion

The idea of second-hand clinking can be extended to third-hand
and higher tiers/levels of clinking. In this, a representative of a
subgroup at a lower level meets representatives of some of the
other such subgroups to form a subgroup at the next higher level.
If one allows third-level (third-hand) clinking, then define n3(1)
to be the number of first-level subgroups each of �n/n3(1)� or
(�n/n3(1)�+1) individuals. At the second level there are n3(2)
groups each of �n3(1)/n3(2)� or (�n3(1)/n3(2)�+1) represen-
tatives from the lower tier. Finally at the third tier there is one
group consisting of n3(2) members each of which represents one
of the second tier subgroups. For example, one possibility for 12
people is as follows: the first tier contains six groups of two peo-
ple each; the second tier consists of three groups of two people
each; and the third tier has one group of three people. This is
shown in Figure 3 with three levels of clinking, where first-level
clinking is thin lines, second-level clinking is the dotted lines and
third level clinking is the thicker lines.

If C3(n, n3(1), n3(2)) represents the number of clinks under
three tiers one gets the recursion:

C3 (n, n3(1), n3(2)) =
1

2

n2

n3(1)
+ C2 (n3(1), n3(2)) (9)

C3

(
n, n3(1), n

#
3 (2)

)
=

1

2

n2

n3(1)
+ n3(1)

pC(2)K2 (10)

where (6) is substituted into (9) with n3(1) and n3(2) replacing
n and n(1). This gives K2 = 3/(25/3) and pc(2) = 4/3; the
form is inferred from (6) and (7). Next differentiate (10) and set
the derivative equal to 0 to find optimum numbers of subgroups
at the first tier:

n#
3 (1) =

1

24/7
n6/7

=

[
1

2pC(2)K2

]1/[1+pC(2)]

n2/[1+pC(2)]

≡ L3n
p0(3).

(11)

From (4)
n#
3 (2) = L2n

#
3 (1)

p0(2). (12)

Combining (11) and (10) results in

C#
3

(
n, n#

3 (1), n
#
3 (2)

)

=
1

2

n2

L3n2/[1+pC(2)]
+

[
L3n

1/[1+pC(2)]
]pC(2)

K2

=

[
1

2L3
+ L

pC(2)
3 K2

]
n2pC(2)/[1+pC(2)]

≡ K3n
pC(3).

(13)

Further exploration shows that a power-law recursion holds for
more tiers.

Let n#
m(i) be the optimal number of individuals in the level

i = 1, 2, . . . ,m − 1 subgroup when there are m tiers of con-
nection. Let C#

m be the minimising total number of connections

under the same conditions. A recursive argument on m yields

C#
m+1 = npC(m+1)Km+1 (14)

n#
m+1(1) = Lm+1n

p0(m+1) (15)

where

p0(m+ 1) =
2

pC(m) + 1

pC(m+ 1) =
2pC(m)

pC(m) + 1

(16)

and

Lm+1 =

[
1

2pC(m)Km

]1/(pC(m)+1)

(17)

Km+1 =
1

2Lm+1
+ L

pC(m)
m+1 Km. (18)

The optimal numbers of individuals in each of the other subgroup
tiers are

n#
m+1(2) = Lmn#

m+1(1)
p0(m)

n#
m+1(3) = Lm−1n

#
m+1(2)

p0(m−1)

...

n#
m+1(k) = Lm+2−kn

#
m+1(k − 1)p0(m+2−k)

(19)

for k = 2, 3, . . . ,m− 1.

 

 

Figure 3: 12 members with third-hand clinking.

Applying these results to third-hand clinking gives the results
in Table 2. So the approximations for the number of groups works
well and three tiers decreases the needed clinking/connections.

4 Two first-level representatives

We mentioned earlier that in sporting tournaments there are often
two representatives who are chosen from the first-level groups.
Each representative from a group is put in a different group at
the next level. Call them Groups A and B. One can then apply
normal or higher level clinking to these groups. This ensures that
two members of the original group have two ways in which their
clinking can occur – one through the representatives in Group A
and one through the representatives in Group B. In fact if there is
a higher level of clinking with one representative from Group A
and one from Group B having a final clink (just like the the ‘fi-
nal’ of a sporting competition) there would be four ways any two
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people in the original group have clinked via high order clinking.
The first is through the Group A representatives of each person;
the second through the Group B representatives of each person
clinking and two ways through the Group A representative of
one person clinks with the Group B representative of the other
through that final higher level clink. The ideal number of first-
level groups can be estimated using an adaption of (9). If there
are n(1) first-level groups and we take C2(n(1)) to be the num-
ber of subsequent higher level clinks involved if there are n(1)
first-level groups, then instead of the total number of clinks (ex-
cluding the final clink between one representative from A and one
representative from B) being

C3 (n, n(1)) =
1

2

n2

n(1)
+ C2(n(1)), (20)

which is a generalisation of (9), it would be

D3 (n, n (1)) =
1

2

n2

n(1)
+ 2C2(n(1)) (21)

since there are C2(n(1)) higher order clinks in Group A and a
similar number in Group B. In the simplest case where there is
only second-hand clinking, this gives rise to the optimal n(1) be-
ing n(1) = (n/2)2/3. Applying this to the cases with n = 10,
50, 100 and 1,000 gives Table 3 where the total number of clinks
ignores the final single clink.

Of course in sports tournaments the objective is not to min-
imise the number of matches played but instead play the number

of matches required by the broadcasting rights. However, this
approach can allow one to look at the tournament structure that
provides the requisite number of clinks/matches/connections.

5 Discussion

The focus of this note is on network design to optimise a par-
ticular measure of performance. Ours is an architectural study,
differing from the great majority of previous works, for exam-
ple [1,2]. These aim to describe plausible behavioural dynamics
that lead to small-world connections. Behavioural models appar-
ently stem from classical experiments [3]. Our formulations for
increasing tiers eventually lead to an optimised Moore graph [4].
Changes in the system performance metric will naturally lead to
altered graph configurations. For instance, recognition of link or
node unreliability, or congestion at sensor-servers, will demand
combined architectural and sensor behavioural dynamic accom-
modation requiring further study.
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Table 1: Second-level clinking examples

Total number of agents, n 10 50 100 1,000

Number of connections with one community 45 1,225 4,950 499,500
Optimal number of subgroups, n(1) (approximation from (4)) 4 (3.6) 11 (10.8) 17 (17.1) 79 (79.37)
R, total number of connections 14 145 381 8,919
F ‡ 31.1% 11.8% 7.7% 1.8%

Table 2: Third-level clinking

Total number of agents, n 10 50 100 1,000

Number of clinks with one level 45 1,225 4,950 499,500
Approximate n(1) (from (11)) 4.8 19.2 34.9 250.8
Approximate n(2) (from (12)) 2.3 5.7 8.5 31.6
n(1) for 3-level clinking 5 19 35 250
i(1): i(1) or i(1) + 1 in first-level group 2 2 2 4
Number of first-level (1) clinks 5 43 95 1,500
n(2) for 3-level clinking 2 6 9 31
i(2): i(2) or i(2) + 1 in second-level group 2 4 3 8
Number of second-level (2) clinks 4 21 51 884
Number of third-level (3) clinks 1 15 36 465
R, total number of clinks 10 79 182 2,849
F ‡ 22.2% 6.5% 3.7% 0.6%

Table 3: Optimal grouping with two first-level representatives

Total number of agents, n 10 50 100 1,000

Number of clinks/connections with one community 45 1,225 4,950 499,500

Optimal number of groups, n(1) (approximation (n/2)2/3) 3 (3.68) 9 (8.5) 14 (13.6) 63 (63.0)
R, total number of connections 18 187 490 11,346
F ‡ 40.0% 15.3% 9.9% 2.3%

‡ ratio of number of clinks if second level allowed compared with only first level: R/(number of connections with one community)
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