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Abstract 

The present paper introduces a new approximation method that suppresses the Runge 

phenomenon with high degree polynomials relying on equispaced nodes. The principle 

consists in using external constraints of the type P”(x)=0 externally to the interpolation 

interval. As those constraints do not have any validity regarding the Runge function behavior 

we call them External Fake Constraints (EFC). We demonstrate that the EFC method can be 

of greater accuracy than Spline interpolation. We then apply the EFC principle to a simple 

aerial robotics motion planning problem and demonstrate the interest for linear system 

optimization under kinematics constraints and present the associated results. We then open the 

door to directions to improve and formalize EFC method and propose other applications in 

aerial robotics motion planning.

1. Introduction 

 For more than a century, the Runge phenomenon [1] has fascinated generations of 

approximation theory mathematicians. Major advances have been made through the last two 

decades by researchers like J.P. Boyd [3] [4] [5] or Rodrigo Platte [6] [7] to deeply understand 

and defeating this counter intuitive phenomenon. Nevertheless, the general spread idea is that 

high order polynomial interpolation with equispaced nodes is not suitable to approximate the 

Runge function as demonstrated by Trefethen [2]. To mitigate the Runge problem, it is 

common to use the Chebyshev nodes for Lagrange interpolation which are known as the best 

solution to interpolate the function with polynomials while attenuating largely the wild 

oscillations occurring near the limits of the interpolation interval. This solution can be 

satisfying for mathematicians, but a lot of operational problems require the needs of 

equidistant nodes which is not the case with Chebyshev nodes. Thus, in order to overcome the 

Runge phenomenon while keeping the interest of polynomials in the solution, Dechao & al [8] 

explored piecewise functions such as splines. The results presented in this study are very 

accurate and can serve as a very good reference for the method that we aim to introduce. The 

authors measured the efficiency of different splines methods such as : natural cubic splines, 

parabolically termined cubic splines, extrapolated cubic splines. Using the least squares error 

indicator : 
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The results obtained in [8] are recpitualed in the Table 1 with n+1 equidistant nodes: 
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n Natural Cubic Spline Extrapolated cubic 

spline 

Parabolically terminated 

cubic spline 
PseudoInverse 

Cubic spline 
(PCS) 

8 4.2652 × 10-4 4.3859 × 10−4 4.3177 × 10−4 4.3132 × 10−4 

10 5.0729 × 10−5 5.0986 × 10−5 5.0623 × 10−5 5.0783 × 10−5 

20 7.6909 × 10−7 7.6857 × 10−7 7.6862 × 10−7 7.6879 × 10−7 

50 3.0750 × 10−10 3.0183 × 10−10 3.0193 × 10−10 3.0467 × 10−10 

TABLE 1.  Results obtained with splines interpolation in De Chao and al. [8] 

 

Another recent work [9] based on an Immunity Genetic Algorithm (IGA) applied to a 

parametric curve has demonstrated that it was possible to solve the Runge phenomen by 

learning methods. The results presented with the IGA method state of Eerror of 8.10
-4

 for 21 

equidistant samples. The recent results obtained with the PseudoInverse Cubic Spline (PCS) 

interpolation [8] and with the IGA [9] will serve as a reference for our approach. In the present 

paper we introduce a new method which approximate the Runge function f(x)=1/(1+25x
2
) 

within [-1;1] by the means of a single high order degree polynomial with equispaced nodes. 

The interest of the method goes beyond the pure mathematical exercise as we demonstrate the 

added value that it brings for optimization problems. We illustrate it through a case of path 

planning optimization for an aerial mobile robot.  

2. External Fake Constraints Interpolation  

Considering the Runge phenomenon and the wild oscillations that occur near the endpoints of 

the interpolation interval, we propose a new approach. Our idea is to artificially increase the 

degree of the initial Lagrange interpolation polynomial relying on equispaced nodes. To do so, 

we extend the linear system represented by k equations used to build the Lagrange 

interpolation polynomial with equispaced nodes. These equations which can be seen as 

Lagrange interpolation contributors in our system are of the type: 

)(..... 01 iii L

n

Ln

n

Ln xfaxaxa    (where f is the Runge function) 

Where the 
iLx are the equidistant k nodes (k is an odd number) in the interval [-1:1] 

To those k equations we add m equations (m is an even number and k + m = n + 1) that we 

use to stabilize the Runge phenomenon oscillations. Those m equations impose to the polynom 

PEFC(x) that we want to find, the constraints that its second derivative is equal to 0 in m/2 

points located within a small interval ]-1-; -1] and m/2 equations of the same type located 

externally and symmetrically on the interval [1; 1+[ where >0. We call those constraints 

External Fake Constraints (EFC) because regarding the behaviour of the second derivative of 

the Runge function which equation is 
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is never equal to 0 

within the small intervals ]-1-; -1] and [1; 1+[as it can be seen on Figure 1: 

 

 
FIGURE 1.  Distribution of second derivative of the Runge function 
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The EFC equations brought into the linear system guarantee that there will be no new 

oscillations generated by the increase of the interpolation polynomial degree. Indeed, 

introducing additional constraints on the second order derivative of the polynomial guarantee 

that the new oscillations due to the degree increase will be generated externally to the interval 

[-1;1]. So those kind of constraints are interesting because they can perform stabilization of 

the internal wild oscillations due to Runge phenomenon while excluding of the interpolation 

interval potential additional oscillations introduced by the polynomial degree increase. 

 

Thus the global linear system that we build with the k+m equations has the following form: 
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The challenge is then to determining m the efficient number of External Fake Constraints and 

S the set of abscissa positions of the fake constraints : S={ 
mEFCEFC xx ;...;

1
} 

The work that we performed has not yet led to a formal determination of those variables. 

However the study has an empirical feature at this stage, the results we have been able to 

provide are of interest for future optimization problems.The linear system that we have formed 

is ill conditioned which does not facilitate the research of the best interpolation polynomial. 

We have not explored a large range of EFC sizes and we have not explored all the possibilities 

in terms of 
iEFCx distribution over the adjacent intervals as well. That is why we think that the 

EFC principle still holds a big potential of improvement. We present in the following section, 

the results that we obtained for 5 equidistant interpolation nodes and 46 EFC points:  

 

 
 

FIGURE 2.  Comparison of the Runge function and EFC Interpolation for 5 equidistant nodes 

 

The results obtained on Fig. 2 with only 5 equidistant nodes which would correspond to a 

degree 4 for the interpolation polynomial are quite impressive. Indeed the method allows us to 

reach an accuracy of 9.26x10
-4

 which is not that far from the results obtained by Dechao & al. 

[8] with the spline interpolation with 9 equidistant points. It has to be noticed that the EFC 

method can generate implicit crossings between the interpolation curve and the Runge 

function. This is the case at the abscissas -0.29 and 0.29 which are not interpolation nodes. 

Another remarkable point is the extreme sensitivity of the approximation to the space between 
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the EFC abscissas. In the presented case, the local minimum found has an increase of ten 

times accuracy for an extremely small variation (10
-12

) between the abscissa where we apply 

the EFC:  the distance between the EFC abscissa is called the EFC space.  

 

The results obtained for 9 equidistant nodes on Fig.3 still improve in the way of being better 

than the spline results as we found a local minimum at 1.26x10
-4

 compare to 4.26x10
-4

 for the 

spline study. We did very few attempts of varying the number of EFC so there is certainly 

potential to improve the accuracy of the results in the future. It has to be mentioned that the 

implicit EFC crossings still remain as for the 5 equidistant nodes interpolation, but the implicit 

crossings have lightly moved to the abscissas 0.31 and -0.31. 

 

 
 

FIGURE 3.  Comparison of the Runge function and EFC Interpolation for 9 equidistant nodes 

 

The results we obtained for 11 equidistant nodes and 60 EFC on Fig.4 : 6.21x10
-5

 are lightly 

less accurate than those obtained by [8] in the spline study (5.06x10
-5

). The explanation 

certainly comes from the limited tests we had with different number of EFC sets. A larger 

exploration of EFC sizes and their associated spaces between 
iEFCx should have been done to 

find better local minima.  

 
 

FIGURE 4.  Comparison of the Runge function and EFC Interpolation for 11 equidistant nodes 

 

At least, for 21 equidistant nodes and 50 EFC we obtain once again a better result than the one 

obtained with the spline approximation. Our approximation reaches 3.41x10
-7

 (see Figure 5.) 

where the spline method obtains 7.68x10
-7

 for the same equidistant points. The originality of 

the result we obtained comes from the offset of the first two
iEFCx which are not positioned on 

the bound of the interpolation interval but slightly moved away to abscissas : 1.0073696 and -

1.0073696. This result highlights another axis of improvement which deals with the potential 

of non constant EFC space (when the distance between EFC abscissa is not constant). 
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FIGURE 5.  Comparison of the Runge function and EFC Interpolation for 21 equidistant nodes 

 

Last but not least we had an attempt for the same problem with 21 equidistant nodes, to 

integrate few Fake Constraints of the same type 0
)(

2

2


dx

xPd
but internally to the interpolation 

interval [-1;1]. With introducing those 6 internal fake constraints we obtained an accuracy of 

10 times superior to spline method : 7.10x10
-8

. The list of abscissas used for the fake 

constraints is provided in Table 2. 

 

List of abscissas used for External Fake Constraints and 6 Internal Fake Constraints (in bold) 

1,227    1,214    1,201   1,188    1,175    1,162    1,149    1,136   1,123    1,11    1,097    1,084    1,071  1,058    1,045    
1,032    1,019    1,006    0,993    0,98    0,967   -1,227   -1,214   -1,201   -1,188   -1,175   -1,162   -1,149   -1,136          

-1,123    -1,11   -1,097   -1,084   -1,071   -1,058   -1,045   -1,032   -1,019   -1,006   -0,993   -0,98     -0,967   -1   1 

     

TABLE 2.  21 equidistant nodes – 44 EFC – 6 IFC 

This preliminary work demonstrates the interest of managing the variations of a polynomial on 

a domain by the use of external constraints. The interest of this principle has been validated on 

a famous example : the Runge phenomenon which has been fixed. We illustrate the interest of 

the method  for motion planning applications in aerial robotics. 

3.  Application of External Fake Constraints to aerial mobile robotics for motion 

planning optimization 

 

We introduce here a simple aerial robotics motion planning problem. The idea is to generate a 

lateral change in a horizontal plane with a small UAV. The trajectory generation is performed 

by the use of a polynomial P(x). The constraints imposed at the point Ms start of the trajectory 

and at Mf end of the trajectory are simple, they are expressed in a referential linked to the 

initial position and direction. The linear system to be solved is the following: 

 

P(xs)=0        P(xf )=yf  

P’(xs)=0       P’(xf)=0     (1) 

P”(xs)=0      P”( xf)=0 (curvature=0) 
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Regarding the kinematics model that we established for the UAV, at a constant speed of 120 

km/h we limit the curvature of the trajectory at Kmax<7x10
-3

 m
-1

,  

calculated from : 

2

3

2 ))('1(

)("
)(

xy

xy
xK



 , the maximum derivative of the curvature at  

maxdt

dK
<6.5x10

-3
 m

-1
s

-1
 and )0(

dt

dK
<5x10

-3
 at the beginning of the trajectory. 

With 6 constraints to fulfil, it is required a 5 degree polynomial:  

 

P(x)=a5x
5
+ a4x

4
+ a3x

3
+ a2x

2
+ a1x+a0 

 

And with coordinates for the ending point Mf (200;40), solving the linear system (1) brings up 

the following solution :  

 

a5=7.5x10
-10

; a4=-3.75x10
-7

; a3=5x10
-5

; a2=0; a1=0; a0=0 

 

We show on the Figure 6 the corresponding trajectory and its curvature distribution on Figure 

7. 

 

         
FIGURE 6. 5 degree polynomial trajectory                         FIGURE 7. Curvature distribution for 5 degree polynomial 

 

This is a simple solution to the problem. But with a 5 degree polynomial and 6 constraints we 

have no latitude to optimize the trajectory. Increasing the polynomial degree to introduce new 

constraints on the trajectory to optimize it in a better way involves some additional oscillations 

risk. That is why people generally prefer piecewise methods as Spline to get rid of the 

oscillations problem of a single polynomial (see §1 with [8] to solve the Runge phenomenon). 

But the interest of the single polynomial is that the trajectory is “deeply continuous”.  

 

Let’s now introduce two External Fake Constraints of the type : P”(xEFC)=0 symetrically 

outside of the trajectory interval. The first interest of those constraints is that they guarantee 

the additional oscillations involved by the increase of the polynomial degree will be remained 

externally to the domain of interest, in our case : [0;200].  

Explanation : As oscillations are due to a change of concavity which occurs when f”(x)=0, 

imposing only constraints of this type guarantee that no additional oscillations will be 

generated within the bounds of the interpolation interval 

 

The second interest of introducing two EFC in the linear system is that we bring some 

additional latitude to optimize the trajectory in the way that positioning the EFC at different 

abscissa will modify the behaviour of the polynomial within the bounds that define the 

trajectory problem. To be convinced about this assertion we propose to solve the linear system 

Proceedings - 5th IMA Conference on Mathematics in Defence 
23 November 2017, The Royal Military Academy Sandhurst, Camberley, UK



 

 

 

 

 

   7 

 

corresponding to 6 trajectory contraints formed in the system (1) plus two EFC. The trajectory 

polynomial becomes of degree 7 and the corresponding system to be solved is then: 

 

P(xs)=0        P(xf )=yf        P”(xs)=0           P”( xf)=0 

P’(xs)=0      P’(xf)=0       P”(xEFC1)=0     P”(xEFC2)=0              (2) 

  

We then solve the above system with 3 different combinations of EFC to show their direct 

influence on the trajectory. 

 

xEFC1=-0.2  xEFC2=200.2 

Polynomial coefficients: a7=-6.20651x10
-14

;  a6=4.34456x10
-11 

; a5=-1.04217x10
-8

 

a4=8.66302x10
-7

 ; a3=3.47912x10
-7 

 

xEFC1=-20  xEFC2=220 

Polynomial coefficients: Polynomial coefficients: a7=-3.53107x10
-14

;  a6=2.47175x10
-11 

; a5=-

5.60593x10
-9

 ; a4=3.31215x10
-7

 ; a3= 2.17514x10
-5

 

 

xEFC1=-200  xEFC2=400 

Polynomial coefficients: a7= -4.16667x 10
-15

; a6= 2.91667x10
-12

 ; a5=0 ; a4= -2.91667x10
-7

 ; 

a3= 4.66667x10
-5

 

 

Those three 7 degree polynomials are plotted on the Figure 8. It is shown the influence of the 

EFC positioning in the trajectory generation. We can observe on the graph that positioning the 

EFC next to the bounds of the trajectory interval (cyan curve) slows down the beginning and 

the end of the curve to capture imposed conditions in Mf. On the other side, positioning the 

EFC far from the bounds of the trajectory interval brings the 7 degree polynomial (red curve) 

next to the 5 degree polynomial.  

 

 

     
 

FIGURE 8. 7 degree polynomials with different EFC        FIGURE 9. Curvature distribution for 7 degree polynomials 

 

We can analyse the matching of the trajectory constraints on the Figure 9 where the curvature 

distribution is plotted for the three curves. This graph shows that when the EFC are close to 
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the bounds (cyan curve) the  derivative of the curvature )0(
dx

dK
 is close to 0 and the 

maximum of the curvature is the highest of the three curves; in the present problem this 

constraint is slightly exceeded (>7.10
-3

 m
-1

).  At the same time the derivative of the curvature 

exceeds the maximum authorized (>6.5. 10
-3

 m
-1

 s
-1

). It comes that we cannot select this curve 

as a possible curve to fulfil the constraints on the trajectory. In the Table 3. We mention the 

other main variables for the different EFC polynomials and the 5 degree polynomial. The 

derivative of the curvature is calculated analytically following the below equation: 

))('tan(cos(cos xyAv
dx

dK
v

dx

dK

dt

dx

dx

dK

dt

dK
   

 

 EFC -200; 400 EFC -20; 220 EFC -0.2; 200.2 Poly. Deg 5 

Kmax 5.61x10-3 6.26x10-3 7.02x10-3 5.77x10-3 

maxdt

dK
 

9.33x10-3 6.11x10-3 6.94x10-3 9.99x10-3 

)0(
dt

dK  
9.33x10-3 4.35x10-3 7.30x10-5 9.99x10-3 

dS 205.61 m 205.96 m 206.31 m  205.57 m 

TABLE 3.  Values of different main variables for EFC polynomials 

 

As we can see in the Table 3, 5 degree polynomial and 7 degree polynomial with EFC (-

200;400) largely exceed the constraints on the derivative of the curvature especially at the 

beginning of the trajectory. In our case the only possible solution is the 7 degree polynomial 

with EFC (-20;220) despite none of the constraints are saturated. For sure the above solutions  

are close one to the other (see close curvilinear abscissas values dS) but our goal was to point 

out the fact that motion planning can be managed differently by the use of EFC which is 

something new. Increasing the number of EFC is possible and offers new possibilities to fulfill 

the constraints imposed to the trajectory. We can imagine extending the principle to 

parametric curves by imposing constraints to negative time t<0 or time over the limit of 

trajectory t>tlimit to manage the motion planning in a better way providing more flexibility to 

the optimization. 

4.  Conclusion 

We introduced in the present work a new approximation method based on External Fake 

Constraints and high degree polynomial interpolation to solve the famous Runge phenomenon 

raised in 1901 by the mathematician. The EFC used in our work imposed second derivative of 

the polynomials to be 0. the We compared our EFC method with Spline piecewise method. It 

has demonstrated that we were able to reach very good approximation with few equispaced 

nodes (5 points) which was not feasible with Spline interpolation. Until 21 equispaced nodes 

we had globally better results than the Spline method. Setting up few internal fake constraints 

immediately increase the accuracy of the method by 10 times on the computations done for 21 

equispaced nodes (10
-8

 accuracy) and this result can be discussed. Anyway there is a lot of 

work ahead to establish a real formal EFC interpolation method as several questions have to 

be investigated: influence of the number of EFC, space between EFC nodes to be analyzed 

and mastered: constant or variable EFC space, other types of EFC like direct external 

constraints of  C
0
 or C

1
 types which is possible but their domain of use has to be formalized 

analytically to avoid undesirable oscillations, mixing up EFC and IFC of C
2
 types. Last but not 

least, the system is strongly ill-conditioned and this numerical instability is certainly a major 

difficulty if not a limitation to approximating complex functions. But this principle can have a 

rich range of applications like: numerical integration, polynomial regression, Spline 

approximation methods improvement and motion planning optimization. On this last 
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application, we demonstrated on a simple case how the EFC can help to optimize the 

trajectory in terms of constraints fulfilment. A particular domain of interest for EFC method is 

certainly motion planning problems using approaches with parametric curves having 

polynomial curvature like of the form: 
01

1

1 ...)( aasasask n

n

n

n  
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