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Abstract 

A military aircraft mission system comprises: one or more sensors, sensor data processing and 

sensor fusion algorithms. These are used to provide tactical information to the weapon system 

and its operator, in a timely manner. Development of a fast jet mission system has traditionally 

been a challenging task to complete to time and cost. Part of the challenge arises because 

overall system performance only becomes apparent when the system components are 

integrated to form the full system, late in the development process, when changes to the 

system architecture, or component specifications, are expensive and time-consuming to 

implement.  

BAE Systems are acting to reduce the risk associated with mission system development by 

creating a performance modelling tool that allows performance models, for individual system 

components, to be combined to synthesise overall mission system performance early in the 

design life-cycle. This tool allows system requirements to be validated, it supports trade-off 

studies between competing system design options and allows the sensitivity of system 

performance to component specification tolerance to be quantified.  

The philosophy of mission system performance model development is that the process of 

sensing the environment results in erroneous and uncertain measurements that propagate 

through the sensor data and fusion processing. These result in erroneous and uncertain reports 

to the weapon system and operator. Characterisation of the gross and minor sensor 

measurement errors and propagation of this uncertainty through the data and fusion 

algorithmic processes, either analytically or using Monte Carlo techniques, allows the system 

output error to be characterised and quantified. 

The BAE Systems mission system performance modelling tool is named Cassandra, after the 

heroine of Greek mythology who was granted the power to predict the future. The current 

state of development of the Cassandra tool is described in the paper and examples of its 

application to topical mission system design problems are presented.  Finally, the proposed 

next stages of Cassandra development are discussed. 

 

1. Introduction 
A major difficulty in the development of a military aircraft mission system is that overall 

system performance does not become apparent until the constituent system components are 

assembled to form the system and it is subject to flight trials, in a representative environment. 

At this stage of development, any change to the system architecture, or to system components; 

to address performance problems, is extremely expensive. Further, significant flight test effort, 

at significant cost, is often required to isolate problems through large scale empirical 

investigation. 

Future military aircraft mission systems are likely to be increasingly complex: to provide a 

semi-autonomous operating capability for reduced aircrew workload in manned operations, or 

to provide an autonomous operating capability for unmanned aircraft operating under strict 

communications constraints. The increased complexity of future aircraft mission systems will 

require an enhanced development approach that goes beyond component integration, system 

test and iteration over a number of cycles until performance is satisfactory. This problem was 
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recognised a number of years ago, by the image processing and computer vision communities 

and the proposed solution involved creation of forward models for system performance. Such 

models allow requirements validation and system optimisation, without exhaustive 

experimentation; see Ratches et al (1997) and Thacker et al (1998) for example. BAE Systems 

MAI are applying a similar forward model based approach, coupled with rigorous application 

of a standard engineering process, to manage system performance throughout the design life-

cycle. Hence, the BAE Systems Cassandra mission system performance modelling tool has 

been developed to: 

 Allow the predictions from disparate component performance models to be combined 

to provide a prediction of overall system performance. 

 Enforce a strict application programme interface (API) to allow re-use of existing 

component models in multiple system models. 

 Encourage development of performance models for system components previously 

thought to be unsuitable for performance prediction: automatic target recognition 

algorithms for instance.  

 Enforce formal documentation and testing of system component models to encourage 

re-use and to provide a repository for retention of corporate knowledge. 

 Support the formal mission systems engineering design process. 

The background to the military aircraft mission system design problem is described in section 

2 and the Cassandra tool and its contribution to addressing the mission system design problem 

is discussed in section 3. Three example applications are described in section 4 and 

conclusions regarding the work to date are discussed in section 5 together with a summary of 

planned future work. 

 

2. Background 

The mission system in a military aircraft is responsible for providing tactical information to 

the aircrew or remote operator, in order to allow optimum achievement of the mission 

objectives. A generic mission system comprises a number of sensors and associated detection, 

track processing and classification functions: to detect objects of interest and to maintain an 

estimate of their current position, velocity and identity. A mission system also includes a 

fusion stage: to combine reports from multiple sensors, to form a single “best” set of tactical 

information from the available sensor data.  

Mission system performance in a particular scenario, in terms of timeliness, validity and 

accuracy of the tactical information it provides, is only optimised if the performance of each 

component is optimised.  The development process illustrated in Figure 1 exploits system 

forward performance models, in order to manage and optimise overall system performance 

throughout design and development. In this process, a series of increasingly sophisticated 

system performance models are developed, in parallel with the main system development 

programme, to support: requirements capture and validation, design trade-offs, sensitivity 

analysis, component specification, sub-system and system testing. Whenever possible, 

component performance models are re-used from previous projects, to exploit prior model 

validation. As the project progresses to detailed design, supplier performance models are used, 

when available, to leverage supplier domain knowledge. 

BAE Systems MAI have invested significant effort in developing performance models for 

complex algorithmic processes over a number of years, see Noonan & Orford (1996), Parker 

(2012) and Willis (2015) for descriptions of performance models for track fusion processing, 

detection processing in electro-optic imagery and target de-lineation in SAR imagery.  
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Figure 1 : Generic system design process 

3. Cassandra 
The Cassandra framework is written in Matlab and uses Simulink to provide a friendly 

graphical user interface. The component models are largely written in Matlab; however, 

models produced in other languages can be accommodated by virtue of Matlab MEX 

functionality. Model requirements are formally documented, as is all verification and 

validation testing, thus providing robust provenance for all models. Each component module 

is divided into code: written to a proprietary standard, that represents the physics of the 

module and text files in which configuration parameters are specified to represent a particular 

sub-system. The combination of code and configuration files allows performance prediction 

for a specific example of a module. Thus the module code can be re-used on multiple projects 

and only the configuration files need to be classified to protect national security and or project 

confidentiality.   

Easy integration of disparate component models is achieved by Cassandra, through application 

of a clear interface standard and rigorous error checking requirements imposed on the 

component models. Information is passed between component performance models via the 

Cassandra system databus, allowing any Cassandra compliant module to be connected to any 

other. The data checking on module input and output ensures that no module executes without 

a valid set of input parameters and that the output parameters generated are within pre-defined 

acceptable ranges, thus helping model de-bugging and avoidance of erroneous input and 

output. The friendly graphical user interface supports non-specialist use of the tool. 

The current module library includes over thirty modules for: infra-red search and track (IRST) 

and synthetic aperture radar (SAR) sensors, detection, tracking and classification algorithms 

for various sensing modalities and modules to predict target geo-location accuracy. 

4. Example Applications 

Three examples are presented below to demonstrate the application of the Cassandra system to 

real world problems and to illustrate some of the mathematical techniques used. 

4.1. Synthetic Aperture Radar Target Recognition Performance 

An advanced SAR system comprises not only the sensor head and low level image formation 

processing, but, also higher level detection, classification and recognition algorithms; to allow 
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the system to present a user with candidate targets for confirmation, avoiding the need for 

exhaustive manual inspection of all images. 

In a SAR system, image formation is a coherent process, over many pulses, which creates an 

image corrupted by distinctive “speckle” noise. Whilst SAR images are superficially similar to 

monochrome optical images, their characteristics are in fact very different, requiring 

significantly different algorithmic approaches for object detection and recognition. A major 

feature of detection and recognition processing in SAR imagery is that assumptions of 

Gaussian image variation: used routinely when processing optical images, are poorly suited to 

SAR imagery. Instead SAR image variation is usually represented by a distribution from the 

gamma family: the K-distribution being particularly popular. This distribution allows 

representation of the average terrain radar cross section (RCS): using the distribution’s  

parameter, and the characteristic “long-tailed” SAR image speckle noise: using the 

distribution’s v parameter. The distribution’s third parameter L represents pixel averaging in 

the image formation process. Spatial correlation of the random field, with correlation length  

is introduced to represent image structure. See Oliver & Quegan (2004) for further details. 

 
Figure 2 : SAR Functional Chain Performance Model 

Key questions for system designers, integrators and operators are: 

 What are the optimum radar operating parameter values to maximise target detection, 

classification and recognition performance for the target of interest in a specified 

operating environment? In particular what SAR image resolution is required to 

provide acceptable performance?  

 How does system performance vary as a function of perturbations in the 

characteristics of the operating environment? In particular, how does variation in 

object contrast effect performance? 

 What false positive rate can be expected for a specified true positive rate and how 

sensitive is this parameter to environmental variation? 

In order to address these design questions, the model shown in Figure 2 has been developed. 

This model includes a number of components to predict the performance of the detection, 

classification and recognition elements in the processing chain and hence the overall system 

performance. The recognition component model, developed at BAE Systems AI Labs Great 

Baddow, assumes a template matching algorithm and predicts performance in terms of the true 

and false positive probabilities, given a definition of: the imaged object, the object and 

background image statistics and the target library. 
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The assumed recognition algorithm compares a region of the SAR image: an image chip, 

detected by a previous stage of processing, with a library of target templates at all possible 

orientations. The identity of the template that achieves the best comparison is assigned to the 

detected SAR image object. A minimum level of comparison is specified to allow an 

“unknown” classification decision. Comparison between the SAR image chip and the target 

template is typically undertaken using the well-known Pearson correlation metric, equation 

(4.1.1), though other metrics can easily be implemented for comparison. 

 

(4.1.1) 

Where: 

  is the SAR image chip value at position ),( yx .  

  is the target template value at position ),( yx . 

  and  are the mean values of  and  respectively. 

Target templates are assumed to be generated off-line, by SAR imaging of targets of interest 

under controlled conditions on a test range. 

The recognition model is thus required to predict the central value and variation of the 

correlation metric for a specified object of interest, target template library and image grey 

level statistics. Analytic techniques are available to predict the distribution of correlation 

metric values in the very specific case of Gaussian input image variation and a linear 

correlation function: zero mean cross correlation for instance: see Oakley (1998) for a detailed 

discussion. However, for the SAR ATR problem, the correlation metric is not a linear function 

of its inputs and the input image variation is highly non-Gaussian. In this situation, a Monte 

Carlo simulation is used. The Monte Carlo simulation relies on repeated synthesis of a target 

or confuser image chip and calculation of the correlation metric for the chip and the target 

library. The maximum correlation metric allows determination of object identity for each run. 

This allows the distribution of maximum correlation metric values to be derived and the 

algorithm true positive and false positive probabilities to be predicted over a large number of 

repeat runs. 

A target or confuser object is represented as a simple piecewise constant pixel array, with 

appropriate object contrast, modified by inclusion of suitably distributed and correlated 

random fields for target and background. The fidelity of the Monte Carlo simulation is thus 

heavily reliant on the ability to generate correlated and un-correlated random fields, with the 

appropriate statistical properties, to allow the variability of target and clutter background 

images to be represented with the necessary fidelity.  

Whilst random number generators for un-correlated exponential and gamma distributed 

variates are readily available, generation of correlated K-distributed variates relies on the 

following proprietary approach. A K-distributed random variate ZK is the product of 2 

independent gamma distributed random variates: YRCS representing terrain radar cross section 

fluctuation and YSpeckle  representing speckle variation. Hence, the spatial auto-correlation K  

of ZK , is related to the spatial auto-correlation, RCS  and Speckle, of  YRCS and YSpeckle: 

 
(4.1.2) 

Following Raghavan (1991) and Marier (1995) the function  can be derived 

for K distributed intensity. Thus, given a requirement for  and a measured or assumed 

, can be determined, which together with the number of looks, L, shape 

parameter  and mean  allows YRCS and YSpeckle to be generated, using the method of 

Armstrong & Griffiths (1991). ZK  is then generated from: 
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(4.1.3) 

An example correlated K distributed random field and the associated histogram are shown in 

Figure 3 below: 

 
Reproduced by kind permission BAE 

Systems AI Labs 

 
Reproduced by kind permission BAE Systems AI 

Labs 

Figure 3 : Correlated K-distributed pixels with shape v = 5, L = 1 and exponential 

correlation  = 8 (left hand image). Corresponding histogram (right hand plot). 

4.2. Tracker Performance 

Kalman filter based tracking systems are widely used in military aircraft mission systems. A 

key design issue is to understand the relationship between individual sensor performance and 

overall system track quality; so that the sensors can be specified correctly to ensure that 

overall system performance is acceptable. In particular, given a sensor’s detection 

performance: in terms of a detection probability and position/velocity covariance, how does 

this effect system track quality in terms of: 

 Probability of true track declaration? 

 Probability of track declaration on clutter features? 

 Probability of track update without corruption and related expected track life? 

 Probability of track corruption? 

A schematic of the Markov random chain used by a tracker performance model is shown in 

Figure 4. Eight track acquisition states are represented in the model, together with the 

associated transitions between states. The transitions between states happen when detection, of 

target or clutter, occurs or if no detection occurs within a specified number of time steps. A 

state transition matrix M is determined from: the transition rules illustrated in Figure 4 and the 

sensor detection performance and related position/velocity covariance, for specified target and 

clutter objects, determined by an upstream sensor performance model. The state probability at 

time k is then estimated from that at time k-1 by:  

1 kk Mss  (4.2.1) 

System track performance is determined from the state probabilities at each time step as 

follows: 

Pr(Clean track) = P(3) + P(4) + P(5) (4.2.2) 

Pr(Clutter affected track) = P(6) + P(7)+ P(8) (4.2.3) 

Pr(Any sort of track) = P(3) + P(4) + P(5) + P(6) + P(7) + P(8) (4.2.4) 

Pr(No track) = P(0) + P(1) + P(2) (4.2.5) 
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States: 

• 0 --- No track. 

• 1 --- New tentative track. 

• 2 --- Tentative track awaiting 

confirming detection. 

• 3 or 6 --- Converged track. 

• 4 or 7 --- Converged track – not 

updated on the last sensor cycle. 

• 5 or 8 --- Converged track – not 

updated on the last two sensor 

cycles. 

• Purple states (6 to 8) are clutter 

affected tracks. 

 

Transitions: 

Green --- detection.   

 

Red --- no detection 

 

Amber --- clutter detection 

Figure 4 : Track Acquisition Model Markov Random Chain Schematic 

A number of versions of the tracker model summarised above have been used on multiple 

aircraft programmes in recent years, most notably in support of recent developments of the 

Typhoon PIRATE infra-red search and track (IRST) sensor. 

4.3. Classifier Performance  

Conceptually, classifier development relies on selection of a feature space in which feature 

vectors corresponding to different object classes are well separated. Once a suitable feature 

space has been selected, a classification rule can be defined that separates the different classes. 

Unfortunately, in real target classification applications the optimum feature space is rarely 

easy to identify and the feature vectors corresponding to different classes are difficult to 

separate. Hence the development, in recent years, of deep learning techniques to 

autonomously select the optimum feature space and classification rule, through extensive 

search over large numbers of training data items. Despite successful application of these 

techniques in many domains, design of a military aircraft mission system including classifier 

technology still requires use of forward performance models for requirement validation, 

sensor specification and design trade-off. A number of techniques for classifier performance 

prediction, avoiding Monte Carlo simulation, are being investigated, one of which is described 

below.  

Assume an N-dimensional feature space in which feature vectors corresponding to different 

object classes occupy separate points in the space. Measurement noise and intra-class variation 

result in regions of uncertainty around the central point for each feature vector. For ease of 

representation, these regions of uncertainty are assumed to be ellipsoidal and adequately 

represented by covariance matrices. If two adjacent object classes have over-lapping 

covariance matrices, as shown in Figure 5 for a 2-dimensional feature space, then there is a 

fundamental classification performance limit imposed by the choice of feature space, the 

measurement noise, intra class variation and inter class similarity. This limit can be 

determined from the geometric separation of the central points for the two class feature 

vectors and the covariance for each feature vector. Assuming that system and measurement 

noise are the dominant sources of feature vector variation, then given a feature vector 

definition, the feature vector covariance can be estimated using a first order perturbation 

approach, if the derivatives in (4.3.1) can be determined. 
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(4.3.1) 

Where: 

•  is the feature vector.  •  is the covariance matrix for . 

•  is the vector of independent 

parameters whose variation causes 

variation of the feature vector values. 

•  is the matrix of first derivatives of 

 with respect to . 

The overlap between adjacent multi-normal variate class feature vectors, with centre points 

 and  and covariance matrices  and , can then be estimated using the 

Bhattacharyya Coefficient  derived from the multi-variate Bhattacharyya Distance , 

Bhattacharyya (1943). 

 (4.3.2) 

 

 

(4.3.3) 

Where: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Figure 6 : Geometry for image based 

classifier example. 

The percentage overlap between the two covariance matrices corresponds directly to the 

maximum limit on the mis-classification probability PFP. This analysis can be repeated for all 

class pairs to determine the limits on mis-classification probability for each pair. For 2 classes, 

the percentage of each feature vector uncertainty region with no overlap corresponds to the 

minimum limit on true positive probability PTP for each class. Thus, assuming Fvec can be 

derived, an analytic approach can be used to make an initial prediction of the limits on 

classifier performance, without the expense of large scale trials or Monte Carlo simulation.  

Consider the situation in Figure 6  for example. An object is at (Xo, 0, 0) in the axis set of an 

imaging sensor. The object can rotate about its local Z-axis and the image captured by the 

sensor is corrupted by electronic noise. A feature vector comprising contrast, aspect ratio and 

CC 

Target A 

Target B 

A
A 

B 

Figure 5 : Example Feature Vector 

Covariance 
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object horizontal image size is used to discriminate between different objects imaged by the 

sensor. Feature vector variation occurs due to image noise and perturbation of object 

orientation. The above performance prediction process is applied to determine the limits on 

classifier performance, given the feature vector and sources of uncertainty. The performance 

limits shown in Figure 7 were generated for the following conditions: 

• Clutter object is 18 pixels wide, 3 pixels high. Contrast = 38 wrt background. 

• Target height = 3 pixels. Contrast = 40 wrt background. Target image width varies. 

• Feature vector is contrast, aspect ratio and x-dimension. 

• Image noise = 5 grey levels 1Object heading variation 1
o
 1 

The results in Figure 7 show that, when target and clutter sizes are similar, the minimum limit 

on PTP approaches 0, whilst the maximum limit on PFP approaches 1: indicating that the 

algorithm cannot reliably discriminate between the two objects for this condition. In other 

conditions, the minimum limit on PTP approaches 1 and the maximum limit on PFP approaches 

0, indicating that satisfactory performance can be expected. 

 
Figure 7 : Predicted limits on classification probability as a function of target size. 

5. Conclusions 

A key element of the military aircraft mission system development problem has been 

identified and the work undertaken by BAE Systems MAI to address this problem has been 

described. Development and integration of forward models for mission system component 

performance, in order to synthesise overall mission system performance, is a key enabler for 

system requirements verification, component specification, design trade-off studies and for 

bench-marking sub-system and system testing. The Cassandra tool has been developed to 

support these mission system development activities by facilitating multiple component model 

integration, allowing re-use of component models across many programmes and enabling 

sharing of models with partner companies, customers and suppliers. 

A number of example applications have been described that include use of Monte Carlo 

simulation, Markov random chains and first order perturbation. These methods are used to 

propagate input measurement or environmental uncertainty through the mission system 

processing chain, to predict the uncertainty in the mission system output information and 

hence system performance. Thus the effect of varying sensor specification, operating 

conditions and algorithmic approaches on system performance can be investigated.  

Work is currently underway to validate existing models: both individual component models 

and full system models, by comparison with actual system performance data generated during 

aircraft flight trials. Additional model development is also being undertaken to integrate 
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legacy models into the Cassandra framework, to enhance existing models and to develop 

models for sensing and signal processing modes that are not currently addressed. Future work 

will also aim to reduce the time penalty associated with Monte Carlo simulation. 

BAE Systems MAI are actively seeking customer, industrial and academic partners for 

component performance model development. 
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