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Abstract 

Track-before-detect methods operate directly upon raw sensor signals without a separate, 

explicit detection stage. An efficient implementation of a Bayesian track-before-detect particle 

filter is described for tracking of a single target in a sequence of images.  The filter provides a 

sample based approximation to the distribution of the target state directly from pixel array 

data.  The filter also provides a measure of the probability that the target is present.  Spatial 

differentiation of the pixel array data allows objects to be tracked when viewed against a 

general scene with additive noise.  Simulated results illustrate that a dim point target of 

unknown amplitude, which has become spatially blurred, may be tracked through a sequence 

of structured images. Detection sensitivity is established using simulated results. 

1. Introduction 

In the usual approach to target tracking, measurements are extracted via sensor signal 

processing and are then passed to the tracking function. Measurement extraction is usually via 

some thresholding process which inevitably results in a loss of information.  This is of little 

consequence if the target signal-to-noise ratio (SNR) is high, so that a good probability of 

detecting the target can be achieved while maintaining a low false alarm rate.  However, for 

small SNRs information loss may be significant.  

In principle it would be better for the tracking function to operate directly on the raw sensor 

signal.  For an electro-optical (EO) staring array, this means that the grey-scale levels from 

every pixel should be available to the tracking function.  This approach of avoiding an explicit 

detection stage is known as track-before-detect.   

Spatial differentiation of the pixel array data allows objects to be tracked when viewed 

against a general scene with additive noise [1].  Simulated results illustrate that the resulting 

algorithm may be applied when the target is viewed against a background of non-Gaussian 

noise (e.g. an EO image of a general scene), has unknown amplitude, and has spatial extent 

through sensor blur. 

The outputs of the algorithm include an assessment of the probability that a target is present, 

and when a target is present, the target’s estimated state (position, velocity, intensity).  

Whilst particle filters may be used to solve non-linear, non-Gaussian filtering problems, care 

must be taken with the efficiency of implementation.  We describe an efficient implementation 

of the algorithm, achieved via the following two refinements to a standard particle filter [1]: 

 A standard filter [2] [3] represents the probability that a target is present by the ratio of 

'active' to 'inactive' particles – denoted by the discrete state 𝑖 (𝑖 denotes the 𝑖𝑡ℎ particle).  

This requires propagation of ‘inactive’ particles i = 0 which do not carry information 

about the target.  The ‘inactive’ particles are computationally cheaper to propagate than 

the ‘active’ ones.  However, once the target has been found then most particles become 

active with i = 1. Thus the computational load increases for the easier part of the 

problem (tracking the target once found).  A scheme for analytic calculation of probability 

that the target is present has been implemented, which does not use ‘inactive’ particles.   
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 A Marginalised Particle Filter (MPF) [4] has been implemented to exploit linear sub-

structure in the problem. This enables the problem to be partitioned into two elements, 

using a particle filter to interact with the images, and applying one Kalman filter per 

particle.  This provides more ‘informative’ particles so substantially reducing the number 

required relative to the standard particle filter. For this application, this approach reduces 

the number of state vector components represented by the particle filter from 5 to 3. 

Marginalised particle filters have been applied to the track-before-detect problem [1] [5], 

where the probability of the target being present is represented as a ratio of ‘active’ and 

‘inactive’ particles.  

This paper is structured as follows. The problem is defined in section 2. The Bayesian 

solution is described in section 3. Section 4 describes the implementation of a baseline 

recursive track-before-detect algorithm, including the prediction and update stages.  (The 

target appearance model is described in the prediction stage). Improvements to the baseline 

implementation are described in section 5, together with an algorithm ‘recipe’.  Simulation 

results are in section 6, followed by conclusions in section 7. 

2. Problem Statement 

A staring EO sensor observes a region of the x-y plane.  Each pixel or resolution cell of the 

sensor corresponds to a square region of dimension s × s, and the sensor array consists of 

N × M pixels.  It is assumed that at time step t, the output of all NM resolution cells are read 

coincidently and the measured intensity of pixel (i, j) is denoted zij(t).  The complete sensor 

measurement set at time step t is denoted: 

 𝑧𝑡 = {𝑧𝑡
𝑖𝑗

∶ 𝑖 = 1, ⋯ , 𝑁;   𝑗 = 1 ⋯ , 𝑀 } (2.1) 

If a target is present and its centroid is at position (x, y), it may contribute to the pixels (i, j), 

in that vicinity.  Given the target position, the contribution to each pixel is assumed known 

and for point objects is due to the sensor point spread function (psf), γ
ij:xy

 , represented by a 

2D Gaussian function with standard deviation σpsf: 

 

 𝛾𝑖𝑗:𝑥𝑦 =
𝑠2

2𝜋𝜎𝑝𝑠𝑓
2 𝑒𝑥𝑝 {−

(𝑥−𝑖𝑠)2

2𝜎𝑝𝑠𝑓
2 −

(𝑦−𝑗𝑠)2

2𝜎𝑝𝑠𝑓
2 }  (2.2) 

In addition to the intensity attributable to the target (when it is present) the sensor may also 

detect a background.  It is assumed that the sensor pixels are corrupted by noise.   

The core track-before-detect algorithm is predicated upon there being at most one target at a 

time in the sensor's scanned region.  (Multi target tracking could be via multiple ‘core’ track-

before-detect algorithms running on different (non-overlapping) parts of the image). Initially, 

at time step  t = 0, it is assumed that no target is present so that the pixel grey levels are solely 

due to background + noise.  A target may appear at any time step and at any point in the 

scanned region.  The initial distribution of the target state vector when it first appears is 

assumed known (for example, uniform over the field-of-view).  Following its appearance, the 

target then proceeds on a trajectory according to a known dynamics model until it disappears 

or passes out of the scanned region.  Following common practice, the birth / death of a target 

is modelled as a Markov process with parameter λ, where λ = 1 indicates that a target is 

present, otherwise λ = 0.  Further detail on the birth / death process is provided in section 4. 

3. Solution 

The filter state vector consists of the velocity, position and intensity of the target and is 

augmented with a discrete state, the target present / absent flag, λ.  The state vector, excluding 

the discrete state, is: 

 𝑥𝑡 = [𝑥̇  𝑦̇  𝑥  𝑦  𝐼]𝑇 (3.1) 
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From a Bayesian perspective, a complete solution of the above problem is given by the 

posterior probability density function (pdf) p(xt, t | z1:t ) where z1:t  denotes the complete set 

of all past images. 

 𝑝(𝑥𝑡 , 𝑡  | 𝑧𝑡 , 𝑧1:𝑡−1 ) =  
𝑝(𝑧𝑡 | 𝑥𝑡 ,𝑡 ,[𝑧1:𝑡−1] ) 𝑝( 𝑥𝑡 ,𝑡 |   𝑧1:𝑡−1 )

𝑝( 𝑧𝑡 |  𝑧1:𝑡−1 )
  (3.2) 

The construction of this posterior pdf depends on the measurement likelihood p(zt | xt , t  ), 

which does not depend upon the previous measurements, and the prediction between time 

steps of the posterior from the previous step, p(xt−1 , t−1 |   z1:t−1 ). The prediction depends 

upon the transition density p( xt , t | xt−1 , t−1 ,   z1:t−1 ) according to the following relation:  

 

𝑝( 𝑥𝑡  , 𝑡  |   𝑧1:𝑡−1 ) =  ∑ ∫ 𝑝( 𝑥𝑡  , 𝑡 , 𝑥𝑡−1 , 𝑡−1 |   𝑧1:𝑡−1 )

𝑡−1

𝑑𝑥𝑡−1 

                                   = ∑ ∫ 𝑝(𝑥𝑡 , 𝑡  | 𝑥𝑡−1 , 𝑡−1 , [𝑧1:𝑡−1] )𝑡−1
𝑝(𝑥𝑡−1 , 𝑡−1 | 𝑧1:𝑡−1) 𝑑𝑥𝑡−1  (3.3) 

    

The transition density comprises the target’s physical dynamic model and that of the 

appearance model: 

 𝑝(𝑥𝑡  , 𝑡| 𝑥𝑡−1 , 𝑡−1 , [𝑧1:𝑡−1]) =  𝑝(𝑥𝑡| 𝑡  , 𝑥𝑡−1 , 𝑡−1) 𝑝( 𝑡| 𝑥𝑡−1 , 𝑡−1) (3.4) 

 

Apart from the possibility of an existing target passing out of the sensor field-of-view, the 

transition of   is independent of xt−1 and is defined by the birth/death Markov model.  If 

t = 0, the target is not present and xt is undefined, otherwise the pdf of xt conditional xt−1 

and t−1 is given by: 

   𝑝( 𝑥𝑡  | 𝑡 = 1 ,  𝑥𝑡−1 , 𝑡−1) = {
𝑝( 𝑥𝑡  |𝑥𝑡−1 )    𝑓𝑜𝑟 𝑡−1 = 1 

𝑝𝐵( 𝑥𝑡   )           𝑓𝑜𝑟 𝑡−1 = 0
 (3.5) 

 

where the transition density p( xt |xt−1 ) is defined by the target dynamics model and pB( xt  ) 

is the initial pdf of a target on its appearance.   

The likelihood p(zt | xt ,t  ) of the state given the pixel measurements is given by: 

 

 𝑝(𝑧𝑡  | 𝑥𝑡  , 𝑡   ) = {
∏ 𝑝𝑆+𝑁(𝑧𝑡

𝑖𝑗
 | 𝑥, 𝑦, 𝐼)   𝑓𝑜𝑟  = 1𝑖,𝑗

∏ 𝑝𝑁(𝑧𝑡
𝑖𝑗

 )𝑖,𝑗                     𝑓𝑜𝑟  = 0
  (3.6) 

Here, 𝑝𝑁(𝑧𝑡
𝑖𝑗

 ) is the pdf of the background + noise in pixel (i, j)  and pS+N(zt
ij

 | x, y, I) is the 

pdf of the target signal+background+noise in pixel (i, j)  given that the target of intensity 𝐼 is 

located at (𝑥, 𝑦).  

 

3.1 Measurement Model – structured scene content 

Equation 3.6 implies that the intensity distributions in each pixel are known and independent.  

If the background scene against which a target is viewed contains structure, then this is 

certainly not the case.   

One way of dealing with this problem is to create a gradient image  by spatial 

differentiation of the intensity image zt. This greatly reduces the inter-pixel dependency and it 

allows the background structure to be represented via a general, image independent, model. 

For images where the scene contains structure, a gradient image  has been produced by 

convolution of the intensity image zt with a Laplacian operator L which represents a 

numerical approximation to the second differential of intensity with respect to pixel position: 

 

 L =  [
0 1 0
1 −4 1
0 1 0

] (3.7) 
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If only the structured background is present, the distribution of gradient intensities can be 

reasonably modelled by a Lorentzian pdf [6]. 

  

   𝑝 ( 𝑖𝑗) =


(2+ 𝑖𝑗
2

)

 (3.8) 

where 
 ij

 are the gradient intensities in the new image .  The parameter , represents the 

scale and general sharpness of the background structure.  The validity of this assertion is 

demonstrated in Figure 1 where an image of Lena’s face (a) is shown with a histogram (b) of 

the distribution of intensities in the image.  It is hard to describe the shape of this histogram 

with a simple parametric model.  An image of gradient intensities produced following spatial 

differentiation is presented in (c), and (d) shows the corresponding histogram with the 

minimum Mean Square Error (MSE) fitted Lorentzian curve superimposed. 

 
 FIGURE 1.  (a) image containing structure.  (b) distribution of intensities in original.  (c)  

image of gradient intensities.  (d) Lorentzian distributed gradient intensities and superimposed 

minimum MSE Lorentzian curve,  = 10.47 

 

If the structured background image were also corrupted by additive Gaussian noise, the 

distribution of the differentiated structure + noise image would be a convolution of the 

Lorentzian pdf with a Gaussian pdf.  This convolution is intractable and so has been 

approximated via a scaled t-distribution with two degrees of freedom: 

 

 𝑝𝑁 ( 𝑖𝑗) =
2

2√2 (2+  𝑖𝑗
2

2⁄ )

3
2⁄
 (3.9) 

where  is the scaling parameter.  Thus we have a model for the combined background and 

noise distribution pN ( 
t

ij
 ) in the image of gradient intensities .   

If the measurement is taken to be the gradient image , rather than the image of absolute 

intensities zt , then the likelihood in Equation 3.6 is calculated by using  instead of zt , and 

correspondingly, zt
ij
 becomes  

t

ij
.   

To complete the definition of the likelihood in Equation 3.6 we also need a description for 

the pdf pS+N(zt
ij

 | x, y, I), the distribution of gradient intensity in pixel (i, j)  given that the 

target of intensity I is located at (x, y).  The effect of a target is to contribute intensity that 

adds to the noise and background defined values in all pixels affected by the target.  Since our 

measurement model operates upon the differentiated image , the intensity contribution to 

pixels surrounding a point target is not simply the sensor’s point spread function 
 i,j; x,y

 but 

rather its differential.  However, the background and noise in each pixel is unaffected by the 

target.  Thus in pixels with an intensity contribution from the target, the mean of the 

background distribution pN (z ij)  becomes displaced according to the contribution from the 

target, so defining the pdf pS+N(zt
ij

 | x, y, I) as:    
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                                  𝑝𝑆+𝑁(𝑧 𝑡
𝑖𝑗

| 𝑥, 𝑦, 𝐼) =
2

2√2 (2 + (𝑧 𝑖𝑗 + 𝐼 𝐿(𝛾𝑖𝑗:𝑥𝑦))
2

2⁄ )

3
2⁄

                              (3.10) 

 

where L(γij:xy) denotes the Laplacian differential operator applied to the intensity produced by 

the sensor’s point spread function centred at the target position (x, y). 

4. Implementation of baseline solution 

The baseline implementation of the Bayesian solution to this problem is via a particle filter 

technique (see [2] [7]). This is a means of implementing a general Bayesian recursive filter 

without the usual linear-Gaussian restrictions.  The recursive Bayesian ‘predict-update’ 

relations  (Equations 3.5 and 3.6) are implemented to obtain the posterior estimate 

𝑝(𝑥𝑡 , 𝑡  | 𝑧1:𝑡). 
For the baseline implementation, the target state vector is augmented with the target 

present / absent flag: [xt(i), t(i)]  (where, as previously noted, λ = 1 indicates that a target is 

present, otherwise λ = 0).  

 

4.1 Measurement update – structured scene content 

The update stage of the filter incorporating measurement information is achieved via weighted 

resampling - the weight for a particle being proportional to its likelihood.  Thus for the 𝑖𝑡ℎ 

particle, [xt(i), t(i)], the resampling weight q(i) ∝ p(zt | xt(i), 1(i)) is defined by Equation 

3.6.  

If the presence of the target only affects a (small) clump of pixels C(x) in the vicinity of 

(x, y), the resample weights may be rewritten so that the weight of each particle for  = 1 

only depends on the product of likelihood ratios in the vicinity of the particle, rather than on 

all MN pixel likelihoods in the image.  Thus the resampling weight may be written: 

 

                       𝑞(𝑖) ∝ {
∏ 𝑙 (𝑧𝑡

𝑖𝑗
 | 𝑥(𝑖), 𝑦(𝑖), 𝐼(𝑖))   𝑓𝑜𝑟 (𝑖)  = 1

𝑖,𝑗∈𝐶(𝑥(𝑖))

        1                                                     𝑓𝑜𝑟 (𝑖)  = 0

                              (4.1) 

 

where the likelihood ratio in pixel (i, j)  for a target of intensity I located at pixel (x, y) is: 

  

                                           𝑙 (𝑧𝑡
𝑖𝑗

 | 𝑥, 𝑦, 𝐼) =  
𝑝𝑆+𝑁(𝑧𝑡

𝑖𝑗
 | 𝑥, 𝑦, 𝐼)

𝑝𝑁(𝑧𝑡
𝑖𝑗

 )
                                                  (4.2) 

 

This simple trick greatly reduces the computational requirement of the particle filter 

implementation. 

 

4.2 Prediction step – baseline birth/death model 

The prediction phase of the filter from t − 1 to t is fairly standard.  The particle set is divided 

into two parts; those for which t−1 = 1 and those for which t−1 = 0, corresponding to the 

target being present, or absent, at the previous time step.  The Markov process defining the 

birth/death model acts on the two sets of particles in the following manner.   

In the transition from t − 1 to t, t−1 = 1 particles either remain at t = 1 with probability 

p11 or transition to t = 0 (target dies) with a probability 1 − p11.  The process is similar for 

t−1 = 0  particles (where the probability of target birth, pBirth = 1 − p00 replaces the 

probability of death, 1 − p11).   
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For particle i, if t(i) = 0 then the target does not exist and xt(i) is undefined.  If t(i) = 1 

and t−1(i) = 1, then  xt(i) is given by the dynamics model:    

 

 𝑥𝑡(𝑖) = 𝑓(𝑥𝑡−1(𝑖),  𝑤𝑡−1(𝑖)) (4.3) 

 

where wt−1(i) is a random sample drawn from the known pdf of the system driving noise.   

Note that if this prediction sends the target out of the sensor field-of-view then the target is 

assumed to have died and t(i)  is  set  to  zero.   If  t(i) = 1 and  t−1(i) = 0,  then for this 

particle the target was born during the transition  t − 1 → t and so  xt(i) is drawn from the pdf 

of the target birth distribution. 

 

4.3. Target appearance model (Birth/Death model) 

The birth/death (Markov) model is the mechanism by which the track-before-detect algorithm 

searches for a target. It models the process by which a target may appear (and begin to be 

tracked) as a transition event which may occur with a specified probability.  The following 

four transitions are possible in each step: (i) Target is born t−1 = 0, t = 1; (ii) Target stays 

alive t−1 = t = 1; (iii) Target dies t−1 = 1 , t = 0; (iv) Target stays dead t−1 = t = 0 .  
When targets are born, they may appear anywhere within the sensor Field of View (FOV) 

(according to a random uniform distribution over the FOV, and with a zero mean velocity).  

The probability that the target stays alive is denoted p11, and the probability that it stays dead 

is p00.  The probabilities of the four possible transitions are expressed in terns of p11, and p00 

in Table 1. (A value of  p00 =  p11 = 0.9 has been used.) 

 

 𝑡−1 = 0  𝑡−1 = 1  

𝑡 = 0  𝑝00 1 − 𝑝11 

𝑡 = 1   1 − 𝑝00 𝑝11 

TABLE 1.  Transition probabilities in the birth/death model for target appearance. 

5. Improvements to baseline implementation 

When the probability that a target is being tracked is low, most of the particles are inactive (by 

definition, since only a small fraction of the particles have t(i) = 1).  In this case (i.e. the 

algorithm is searching for a target) the ‘new born’ particles are used to propose new candidate 

target positions and intensity in each step.  

According to the birth/death model, the fraction of the 'inactive' particle set that becomes 

‘new born’ is defined according to the probability that a target is born, pB = 1 − p00, for 

which we have used 0.1.  In this case 10% of the 'inactive' particles are potential sources for a 

target, at the following step, whilst the other 90% of the particles remain ‘inactive’.  Thus a 

maximum of 10% of the particles are used to search for a target in each step. 

The ‘inactive’ particles are computationally cheaper to propagate than the ‘active’ ones (the 

likelihood ratio of ‘inactive’ particles is 1, by Equation 3.6).  However, once the target has 

been found then most particles become active with t(i) = 1.  Thus the computational load 

increases for the easier part of the problem (tracking the target once it has been found). 

This wasteful procedure is avoided by an analytic scheme for calculating the probability that 

the target is present p( t | z1:t ), without propagating ‘inactive’ particles. 

 

5.1. Scheme for calculating the probability that the target is present  𝐩( 𝐭 | 𝐳𝟏:𝐭 )   
A scheme has been implemented which calculates the probability that the target is present 

p( t | z1:t ) analytically, without propagating ‘inactive’ particles, and substantially improves 

efficiency.  The target present / absent flag, t(i), is no longer required in the particle state 
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vector, so the number of state dimensions represented by the particle filter is reduced by one.  

Furthermore, when the probability that a target is already being tracked is calculated to be 

(near) zero, the analytic scheme uses (practically) all of the particles to search for the target.  

(Whereas the baseline scheme would use just the fraction pB of the total number of particles – 

making the new scheme 10 x more efficient for the assumed value of pB = 0.1.)  Space 

restrictions do not permit a full description of this new method, which will be published 

separately. 

 

5.2. Marginalised Particle Filter 

A further improvement in efficiency of implementation exploits linear sub-structure in the 

problem and enables the problem to be partitioned into two elements, 𝑥𝑡 = [𝑥𝑡
𝑙    𝑥𝑡

𝑛]𝑇. This 

partitioning is possible because the dynamic model is a linear function of the state vector 

elements xt
l  and the measurement model is a non-linear function of the elements xt

n.  

Accordingly, the ‘non-linear’ states xt
n represent the target’s position in image axes, and its 

intensity, whereas the ‘linear’ states xt
l  represent target velocity components. The ‘informal 

labelling’ of parts of the state vector as ‘linear’, ‘non-linear’, is adopted from [4], which 

provides a good description of this partitioned approach, known as the Marginalised Particle 

Filter.  

The Marginalised Particle Filter represents xt
n with particles, and applies one Kalman filter 

per particle, that provides the conditional distribution for the ‘linear states’ xt
l , conditioned 

upon the ‘non-linear’ states.  For this application, this approach reduces the number of state 

vector components represented by the particle filter from 5  3.  This substantially reduces 

the number of particles required, relative to the standard particle filter, to populate the state 

space at an equivalent density.  (Equivalent to a factor of 100 reduction in the number of 

particles required, e.g. 100,000 particles over 5 states is 10 per axis, so for the same density, 

10^3 = 1000.  It is recognised that more effort is required for the Kalman Filter update of each 

particle, than for propagation of standard particles.) 

In the context of the track-before-detect problem, the partitioning applies as follows.  The 

problem is to jointly estimate the probability that the target is present, , and if it is present 

then its position, intensity and velocity.    

 

 
𝑝(𝑥𝑡

𝑙 , 𝑥𝑡
𝑛, 𝑡  | 𝑧1:𝑡 ) =  𝑝(𝑥𝑡

𝑙  | 𝑥𝑡
𝑛 , 𝑡  ,  𝑧1:𝑡  ) 𝑝(𝑥𝑡

𝑛 ,𝑡  |  𝑧1:𝑡  )

            =  𝑝(𝑥𝑡
𝑙  | 𝑥𝑡

𝑛 , 𝑡  ,  𝑧1:𝑡  ) 𝑝(𝑥𝑡
𝑛 | 𝑡  ,  𝑧1:𝑡 )𝑝( 𝑡  | 𝑧1:𝑡 )

  (5.1) 

 

Thus the desired posterior is available via the non-linear state update p(xt
n | t ,  z1:t ), and 

then a linear state update (conditional on the non-linear update), i.e. p(xt
l  | xt

n , t ,  z1:t ).  

These two updates are conditional upon the estimate of the probability that the target is 

present, p( t | z1:t ). 

 

5.3. Algorithm Recipe 

 Calculate the likelihood ratio for each particle (depending upon whether it represents a 

new born particle or a ‘stayed alive’ particle); 

 Update the target present probability: Pt−1 =  p(  t−1 = 1 | z1:t−1 ) to get Pt; 

 Update the estimate of the target’s state, p(xt
l  , xt

n | t = 1 ,  z1:t).  This is an output; 

 Perform resampling of particles if needed (including ‘jitter’); 

 Carry out the Birth/Death process; 

 Prediction step (step 4b of the paper [8]); 

 Kalman update of ‘linear’ states for all ‘stayed-alive’ particles (step 4c of the paper [8]). 
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6. Illustration 

An illustration of the algorithm’s operation, for a single run of the algorithm on synthetic data, 

is presented in subsection 6.1 for the case where the target is viewed against a structured 

background. In subsection 6.2 Monte Carlo simulations are used to illustrate the detection 

sensitivity for the case where the target is viewed against a structured background, and against 

a noise image (no structure). 

 

6.1. Illustration of algorithm on synthetic data  

To illustrate the operation of the filter we have simulated the case of a point target with sensor 

blurring by a Gaussian point spread function of standard deviation psf = 0.5 pixels. 

A sequence of 35 frames of data has been simulated.  Each frame consists of an array of 

6040 pixels.  There is a structured background scene in this illustration, to which white 

Gaussian noise of standard deviation 1 intensity unit has been added in each pixel.  A target 

was introduced in frame 6 and deleted in frame 28.  The intensity level of the target, prior to 

blurring, was I=13. 

Example frames from the measurement sequence are presented in Figure 2. The target was 

present from step 6 to 27 inclusive, and so its signal is present in three of the four subplots. 

The filter was run with 10,000 particles.  The algorithm was applied to the measurement 

intensities following spatial differentiation (producing images such as those in Figure 3). 

The green dots in Figure 3 show samples from the position distribution of the estimated 

target (i.e. ‘stayed alive’ particles) at four frames (three of which correspond to the 

measurements shown in Figure 2).   The red dots show samples from the ‘new-born’ position 

distribution.  

Note that initially samples appear to "swirl" randomly over the image.  Several time steps 

after the target has appeared the particles learn the target location and cluster around it.  When 

the track is well established a tight clump of particles is formed. 

The purple ellipse is drawn to enclose the 0.989 probability of the green (‘stayed alive’) 

particles (it is a co-variance fit to the position distribution, which is clearly non-Gaussian – 

particularly before the target is found).  

The probability of the target being present is plotted in Figure 4.  It takes about ten frames 

following the appearance of the target before this probability rises above 0.9.  The mean 

position estimate is also plotted in Figure 4 for those steps when the filter's assessment of the 

probability that a target is present exceeds 0.9. 

 

FIGURE 2. Example measurement frames showing structured background and dim target (frames 15, 20 & 

25).  Before blurring by the psf, the target’s intensity was 13 times the standard deviation of Gaussian noise. 

Blurring psf standard deviation was 0.5 pixels.  
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FIGURE 3.  Illustration of particle position distribution. Track-before-detect algorithm output superimposed 

on spatially differentiated images (input to algorithm).     

             

FIGURE 4. (left) Estimated probability that the target is present (green) compared with true target 

appearance (red) v.s. time step.  (middle & right)  Estimated mean target position (blue asterisk), plotted 

when the probability of the target being present > 0.9. (Truth shown by red dots.)  Image shows the final 

frame of differentiated image. 

 

6.2  Detection sensitivity via Monte Carlo simulations 

Monte Carlo (MC) simulations using synthetic data are used to establish the detection 

sensitivity of the algorithm. The target’s initial speed was randomly varied in each replication, 

and each true target path generated by a random (different in each rep) driving noise process 

(in the Discrete White Noise Acceleration model).  Each frame of the random Gaussian noise 

is generated independently. 

The green lines in Figure 5 show the detection performance (i.e. the filter’s assessment of 

the probability that the target is present) for each of 10 MC replications, for two different 

experiments.  The plot on the left shows the detection performance for the case where a target 

is viewed against a structured scene (as per illustration in section 6.1) with Gaussian-blurred 

target (whose intensity prior to blurring was I = 13).  The plot on the right shows the 

corresponding performance for the case without a structured background (so no spatial 

differentiation) and with target intensity of I = 6 (prior to blurring).  Note that for the 

unstructured case, the background noise is Gaussian distributed, but is modelled as a scaled t-

distribution with 2 degrees of freedom.  If the model were perfectly matched to the data, 

slightly improved detection performance may result. Even so, a target of this intensity is not 

visible to the human eye in the measurement data, yet is reliably detected by the algorithm. 
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FIGURE 5.  Estimated probability that the target is present (green) & true target appearance (red) v.s. time 

step for 10 Monte Carlo reps. (left)  Target viewed against a structured scene (as per illustration in section 

6.1). Target’s (un-blurred) intensity I = 13; (right) Viewed against a background without structure, I = 6. 

7 Summary & Conclusions  

An efficient particle filter implementation of the track-before-detect algorithm has been 

developed, based upon the simple algorithm used in [1] [2].  The simple algorithm has been 

extended to use a Marginalised Particle Filter [4] to exploit linear sub-structure within the 

dynamic and measurement model.  When combined with an analytic scheme for calculating 

the probability that a target is being tracked, the resulting reduction (by 3 dimensions) in the 

particle filter state vector (for this problem) provides a factor of 10100 improvement in 

efficiency c.f. a basic particle filter.   

Synthetic data has been used to establish the sensitivity of the algorithm.  When the 

algorithm is used in a mode where input images contain substantial 'structure', its sensitivity is 

reduced by approximately a factor of 2 compared with that achieved without structure.  An 

illustration of the algorithm for the case where a dim target moves over a structured scene 

shows detection and tracking of a target that is difficult for the human eye to identify in the 

measurement data. For the unstructured background, it is able to detect and track a target that 

is not visible to the human eye in the measurement data. 
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