
Westward Ho! Musing on Mathematics and Mechanics
Alan Champneys CMath FIMA, University of Bristol

In the latest of his features from Bristol
and the West Country, Alan Champneys
considers the growing craze of surfing that
features on many west facing beaches in
Devon and Cornwall. The journey will
take us on through an elementary guide to
water wave theory, from pond ripples to
bores, illustrating just a few of the math-
ematical subtleties. We will also examine
various myths, such as on the groupings of
waves, the naming of rock festivals and one
of the most grossly misnamed equations in
science.

Boardmasters

I n my last Westward Ho!, I extolled
the virtues of days spent at the beach.
I grew up in the South-East of Eng-

land. Trips to the beach involved sand

mechanics, boundary layer theory, fluid
transport and not a little skill on the part
of the surfer. So let us just concentrate on
the waves that they try to ride.

A most obvious observation is that
the waves breaking on a beach are more
spread out and have steeper amplitudes
than the periodic waves I see when I drop
a stone into a pond. I have often been fasci-
nated by water waves, but I realise there is
almost nothing I understand. My PhD su-
pervisor was an internationally acclaimed
expert. When I did my postdoc I also
became aware of how water wave theory
has spawned many problems in non-linear
analysis: the steepest wave, rogue waves,
surface tension as a singular perturba-
tion, Boussinesq approximations, Stokes
waves, long waves, shallow-water approx-
imations, integrability, scattering, inverse

castles, rock scrambling, paddling, eating too much ice cream and
losing money on various ingeniously designed slot machines. I
can recall jumping waves, but never trying to ride them. Surfing
was something that only happened on TV (especially in adverts
for a certain brand of men’s aftershave) in a world I could only
dream of. It was not until I relocated to the West Country that I
discovered beachside shops selling wet suits, long boards, body
boards, and various fashion accessories.

In August this year my daughter will travel with her friends to
Boardmasters in Newquay. This is supposedly a family friendly
festival that combines music with surfing and other beach sports.
It’s a particular take on the modern summer music festival craze
that has become ever-so-popular across Europe. The original
such festival takes place on a farm in the small village of Pilton
near Shepton Mallett. I have never met Michael Eavis, the
founder, but he seems like a genuine man of principle. Never-
theless, I would argue that had he not chosen the life of a dairy
farmer, social campaigner and music promoter, he could have had
a successful career in advertising. ‘Shepton Mallet festival’ does
not have the same ring to it as ‘Glastonbury!’

It would also appear that the fame from the festival has done
wonders for the small Somerset town that is some 5 or 6 miles
from Worthy Farm. I remember visiting about 30 years ago what
was a rather sleepy market town, with rather tenuous connections
both to Joseph of Arimathea and to the King Arthur legend. Glas-
tonbury has now become a mecca for New Age folk, with shop
after shop selling strange smelling salts, crystals and books on
magik, crop circles, and the like. I recall sitting in a coffee shop a
few years ago next to a jolly family with young children in a some-
what exuberant mood: ‘Merlin, Morgana, please play nicely!’

I digress. I never took to surfing. I had two lessons and did
not even manage to catch a wave, let alone stand up. It is a mys-
tery to me how my lithe sons and nephews manage to glide with
some ease on even quite small waves. I do enjoy body boarding
though. I would love to write a piece on the mechanics of surf-
ing, but it seems to me to rely on a complex mixture of rigid body

scattering . . . and much more. Indeed many great mathematicians
including the IMA’s current president have studied, and still do,
the sequences of crests and shallows that reach our shores. Over
the years, I have dabbled in solitary-wave theory, but I would
not call myself an expert in fluid mechanics by any stretch of the
imagination. So can I overcome my inferiority complex, and try
to understand at the least the basics of how surfable waves form?
Probably not. I will leave the reader to judge.

The first question I want to understand is what causes the
changing amplitudes of the waves that surfers ride on the beach.
In particular, is there any truth in the surfer’s adage that the sev-
enth wave is always the biggest?

A water wave is more precisely referred to as a form of sur-
face gravity wave. This confused me and made me think that, like
the tides, ocean waves are driven by the moon’s gravity. They are
not; the name ‘surface gravity wave’ simply refers to the interface
between water and the air above it. Ocean waves are initiated by
wind, rather like the regular waves you might see on a boating
lake in a park on a windy day. But what surfers are really looking
for are not waves that are directly formed by the local wind, but
a swell. That is, a series of waves generated by a distant weather
system, which have been carried for a duration of time over a
fetch of water. Generally speaking, the longer the fetch the more
the waves disperse (become well organised into waves of differ-
ent frequencies travelling at different speeds), and the more they
grow in amplitude and become steeper (become less and less like
sine waves) and so become more fun to surf.

Actually, the precise mechanism of swell generation in deep-
water oceans is not straightforward. There can be many random
effects. An orthodox explanation seems to involve at least three
steps. First, turbulence in the wind results in random pressure
fluctuations to the sea surface causing small-amplitude waves
with wavelengths of the order of a few centimetres. A cross wind
then amplifies these waves, with non-linear feedback occurring
through shear instabilities. Then, random interactions between
the waves transfer energy into longer, faster waves. The waves
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then disperse so that the longest waves travel fastest. So, when a
swell first arrives at the shore, the waves tend to be small, long
and fast. There then seems to be a sweet spot for surfers some
hours later with larger amplitude waves travelling at roughly the
same speed, with just a small spread of frequencies.

The further the fetch, the more this effect is exacerbated. It
takes of the order of a day for a swell to travel across 1,000 km of
sea. This is why surfing beaches on the UK coast typically face
west to capture swells that have travelled across the Atlantic. On
the west coast of the US, waves typically have even greater am-
plitude and longer periods between waves, because of the longer
fetch across the Pacific.

But why the seventh wave? It is certainly true that swell waves
tend to come in modulated groups, this is a natural consequence
of linear superposition of waves of different, nearby frequencies.
Another example is the principle of ‘beating’ that we hear when
two nearby notes are played simultaneously. So there are inter-
vals of high wave energy, followed by intervals of lower energy.
This has the appearance of small packets, or groups of waves (see
Figure 1) with waves at the front and back being of smaller am-
plitude and having longer inter-peak frequency. So the biggest
waves are in the middle of the group.

Figure 1: Illustrating the difference between phase and group
velocity in a packet or group of waves.

There is more subtlety. However, within each group, waves
are constantly forming and disappearing. Taking an individual
wave crest it typically forms at the back, has a finite life before
disappearing off the front as an inconsequential ripple. This prop-
erty is due to the difference between phase velocity (the speed of
an individual wave crest) and group velocity (the speed of the
whole group of waves) of water waves. In theory, at least for
small-amplitude waves, phase velocity is twice group velocity.
Next time you drop a stone in a pond, look at the different speed
of an individual wave crest and the speed at which the circular
patch of waves spreads out.

But is the seventh wave always the biggest? This would de-
pend on the number of waves in a group. But that number would
depend on the modulation period of the wave packet as well
as the dominant underlying frequency of the individual waves.
However, as pointed out by one of the US’s top meteorologists
John Guiney, writing in Scientific American [1] there are no set
numbers for these two constants. They depend on all kinds of

details like the length of the fetch, the severity of the storm caus-
ing the waves in the first place, interactions with other winds since
the swell was generated, and local bathymetry variation. The fact
that waves are constantly moving from the back to the front of a
group also means that the notion of what is the seventh wave is not
actually well defined. A surfer might look far out to sea, spot the
seventh in a group and follow that crest till it comes into the surf
zone. But by then that crest may have moved towards the front of
the group and become significantly smaller. Nevertheless, there
may be some approximate truth in the seventh-wave theory be-
cause, at least for long Pacific fetches, the number of waves in a
group is typically of the order of 10–20, with 14 or 15 not being
uncommon.

Next, why do waves break? Again there are many answers
and as far as I know it is still a matter of ongoing research to ex-
plain why small spatio-temporal localised patches of white spray
can be observed in even moderate seas. Why waves break as they
approach the shore though is reasonably well understood. It is all
to do with shallow-water theory. As the depth decreases, a bal-
ance between non-linear focusing effects and spatial dispersion
tends to lead to steeper, more localised waves. The waves get
steeper and steeper, until they become too steep to be described by
a (weakly) non-linear balance. Continuum theory breaks down.
The wave eventually overturns which causes turbulent effects to
dominate, leading to the tumbling and crashing that is character-
istic of the rolling breakers sought by surfers.

How can we describe mathematically at least the first part of
this process, non-linear wave steepening? Again it seems to me
that things are rather confusing, because of the many different
model equations that can be derived by choosing different distin-
guished limits of the time and space scales involved (see for exam-
ple [2] for a discussion of the physical applicability of the various
approximations and the dangers of appealing to the wrong math-
ematical theory). Let me first start from first principles. Much of
what follows can be found in the excellent book by Darrigol on
the history of fluid mechanics [3].

In fact, we first need to understand how to get a wave equation
at all for the free surface deformation of water, from the under-
lying Navier–Stokes equations of incompressible flow. We shall
consider flow in a direction x of fluid at a height y above a flat
ocean floor at y = 0, and suppose that the free surface when
undeformed is at height y = h. (To consider the full breaking
process, we would need to let h vary slowly with x, but that is be-
yond the scope of this brief derivation.) Let w(x, t) represent the
additional height of the free surface due to a wave. Let u(x, y, t)
represent the horizontal velocity and v(x, y, t) the vertical veloc-
ity at any point in the fluid. As is common when describing the
flow of water, we assume that viscosity can be neglected and that
the fluid is irrotational and incompressible. Under such assump-
tions, it was first shown by Euler that the flow can then be de-
scribed by a potential function φ(x, y, t) such that u = ∂φ/∂x
and v = ∂φ/∂y.

The continuity equation says that mass must be conserved in
an incompressible fluid. This implies ∂u/∂x+∂v/∂y = 0 at ev-
ery point of the fluid. Taking the potential form of the velocities
we obtain the Laplace equation

∂2φ

∂x2
+

∂2φ

∂y2
= 0, for all 0 < y < h+ w. (1)

So we are looking for harmonic functions within the water. All
the complexity comes when we consider the boundary conditions.

phase velocity

group velocity{
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At the bottom of the channel, it is natural to assume that there
is no flow escaping:

(v =)
∂φ

∂y
= 0 for y = 0. (2)

The boundary conditions at the top of the channel come from
two more physical principles. First there is a kinematic boundary
condition that a particle on the free surface remains on the free
surface. Thus the vertical velocity must be equal to the change of
height of the wave

(v =)
∂φ

∂y
=

∂w

∂t
at y = h+ w. (3)

The second is a dynamic boundary condition that balances forces
across the free surface. Ignoring the (weak) effect of surface ten-
sion, this leads to the Bernoulli equation,

∂φ

∂t
+ gw+

1

2

[(
∂φ

∂x

)2

+

(
∂φ

∂y

)2
]
= const. at y = h+w.

(4)
Note that the only non-linearity is in the dynamic boundary con-
dition.

From the above as derived by Euler, Lagrange was the first,
in 1871, to derive a linear wave equation under certain simpli-
fications. Specifically, suppose that the depth of the channel is
small compared to the wavelength λ of a typical wave h � λ and
the height of any wave is small compared to the depth w � h.
Since h is small, it is now supposed that the variation of φ in the
y direction is weak and so we can write to leading order:

φ = φ0(x, t) + y2φ2(x, t). (5)

Note that there cannot be a linear term in y, otherwise we could
not satisfy the bottom boundary condition (2) at y = 0. Feeding
this form of φ into the Laplace equation (1), we find to leading
order in y,

φ2 = −1

2

∂2φ0

∂x2
. (6)

The main difficulty is how to simplify the non-linear, dynamic
boundary condition (4). If we suppose that the velocities are all
of the same order of magnitude as w, and keep only the leading-
order terms, this condition becomes

∂φ0

∂t
+ gw = const. at y = h+ w, (7)

which differentiates to

∂2φ0

∂t2
+ g

∂φ

∂y
= 0 at y = h+ w. (8)

To obtain (8) we have used the kinematic boundary condition (3)
to substitute dφ/dy for dw/dt on the free surface.

Combining (8) with (5) and keeping only the leading-order
terms gives

∂2φ0

∂t2
− gh

∂2φ0

∂x2
= 0.

Differentiation of this equation with respect to t and substitution
of ∂φ0/∂t = gw+ const. from (7) we find that the height w(x, t)
satisfies the familiar linear wave equation:

∂2w

∂t2
− gh

∂2w

∂x2
= 0,

with wavespeed c0 =
√
gh.

But what happens when the wave amplitude gets larger? Now
there are many possible choices of approximations, but I am go-
ing to describe just one, which leads to the much cited Korteweg–
de Vries (KdV) equation. We begin by again expanding the ve-
locity potential φ as in (5), from which we again obtain (6). It is
helpful at this point to non-dimensionalise, using a characteristic
wavelength λ. Specifically we write

x =
x

h
, y =

y

λ
, t = t

c0
λ
, w =

w

a
, φ =

φ

c0
, (9)

where a is the maximum amplitude of the waves we wish to de-
scribe. Dropping the overbars for ease of presentation, it is useful
to introduce two small parameters

ε = (a/h) and δ = (h/λ)2,

and look for waves for which ε and δ are small.
Equations (5) and (6) written in the scaled variables (9) now

imply that on the free surface y = 1 + εw,

φ = F − (1/2)(1 + εw)2δFxx + (1/6)δ2Fxxxx +O(3) (10)

where O(3) means terms that are at least of cubic order in ε and
δ, and F (x, t) is the scaled version of what was previously called
φ0. From (10) we obtain

u = φx = f − (δ/2)fxx +O(2), at y = 1 + εw, (11)

where f = Fx. From differentiation again, using (6) evaluated at
a height y we similarly obtain

v = φy = −δ(1 + εw)fx +
δ2

6
fxxx. (12)

Lagrange’s derivation kept only the leading-order (ε and δ inde-
pendent) terms. Here, we shall keep terms that are O(1) in these
small quantities. To this end, the dimensionless kinematic bound-
ary condition (3) becomes φy = δwt + δεφxwx + O(3). Upon
substitution of (11) and (12) and cancellation of a common factor
δ, this formula can be rearranged to read

0 = wt + εwxf + (1 + εw)fx − (δ/6)fxxx +O(2). (13)

Similarly, differentiation of the dynamic boundary condition (4)
with respect to x gives 0 = φxt+(1/2)ε[(φx)

2+(φy)
2/δ]x+wx.

Again, expressions forφx andφy can be substituted from (11) and
(12), giving

0 = ft − (1/2)δfxxt − εffx + wx +O(2). (14)

Now, equations (13) and (14) represent a pair of simultane-
ous equations for the unknowns w(x, t) and f(x, t). A careful
attempt to solve these equations at zeroth and first order reveals a
suitable relationship between f and w, viz.,

f = w − (ε/4)w2 + (δ/3)wxx +O(2).

Substitution of this expression into either (13) or (14) leads to the
same equation up to first-order terms:

wt + wx + ε(3/2)wwx + (1/6)δwxxx = 0. (15)

A further scaling of time and w allows us to effectively set
ε = δ = 1, which then leads to the usual dimensionless version
of the KdV equation.
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Figure 2: Cnoidal waves of increasing steepness and their
infinite wavelength limit, the sech2-solitary wave.

To me at least, this process of deriving (15) is somewhat in-
volved and non-trivial, given the ubiquity of the KdV equation.
In fact, there are many other contexts in which the KdV equa-
tion arises as a model of physical phenomena. It’s just that it
was first derived in the context of water waves. The whole field
of soliton theory and integrable systems owes its origin to Mar-
tin Kruskal and Norm Zabusky’s discovery in the 1960s that the
KdV equation has a remarkable property of complete integrabil-
ity. According to a popular search engine there are now over 200
scientific papers a year with Korteweg-de Vries or KdV in the ti-
tle alone (let alone in the body of the text). I cannot do justice
here to the myriad of properties of the solutions of this remark-
able little partial differential equation (PDE) with just one non-
linear term, nor the many other integral PDEs that are its close
cousin. Also many of these properties are not of direct relevance
to our theme of water waves. In fact, for now, it will suffice for

us to know that the KdV equation supports long, steep waves,
known as cnoidal waves, which can be expressed as Jacobi el-
liptic functions. Cnoidal waves are periodic waves with arbitrar-
ily long periods whose crests are more localised than sine waves
(see Figure 2). In the limit as the wavelength tends to infinity we
get a completely localised solitary wave, the famous KdV soliton
whose profile is proportional to sech(x− ct), where c is the wave
speed. Note that for this large-amplitude wave the group velocity
and phase velocity are identical.

Darrigol [3] provides the detailed history leading to the dis-
covery of the KdV equation – from John Scott Russell’s first
canal-side observations in the early 1800s of a solitary wave, end-
ing with Diederik Korteweg and his student Gustav de Vries’s
derivation of (15) in the latter’s PhD thesis in 1895. Part of that
story will feature in a future Westward Ho!, but here I want to
provide just one remark. The KdV equation would appear to be
an example of Stigler’s law of eponymy:

No scientific discovery is ever named after its origi-
nal discoverer. [4]

Stigler himself attributes the discovery of this law to Robert
Merton, meaning that the law applies to itself. Specifically, ac-
cording to Darrigol’s careful reading of the 19th century litera-
ture it was Joseph Boussinesq who first derived the KdV equation
some 19 years before Korteweg and de Vries. Boussinesq went on
to have a distinguished career, and his name abounds across fluid
mechanics. In contrast, de Vries left science after his PhD and
Korteweg did not publish further scientific papers of any great
significance. Nevertheless, such is the impact of soliton theory
that the names of Korteweg and de Vries are immortalised.

I said that waves that surfers seek are caused by wind. This
is not entirely the case. I could hardly provide an article on surf-
ing waves in the West Country without describing our region’s
regular, predictable, record-breaking surfable wave: the Severn
bore (below). This is a rather different kind of solitary wave that
occurs due to the high tidal range of the Severn (the second high-
est of any estuary in the world) and the abrupt narrowing of the
estuary between Bristol and Gloucester.

Surfers on the Severn bore.
© 2017 Peter Wiles | fotoLibra
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My late colleague Howell Peregrine was a worldwide author-
ity on water waves, and spending his entire career in Bristol, he
became an expert on the bore. He was a deeply kind man, but one
who could carry on for hours and hours about the intricate details
of a particular form of water wave, and would regularly organise
trips to observe particularly good examples of the bore. As well
as a consummate theoretician, he was known for taking quite re-
markable photographs of naturally occurring wave phenomena
including the bore; his photographs appear in many textbooks on
fluid mechanics. The bore is not like the KdV soliton in that it
is really a shock wave, a travelling front that separates two differ-
ent flow states; calm and approximately laminar upstream, deeply
turbulent downstream. Depending on the phase of the moon and
various weather effects, the wave can be up to 2 m high.

It has become extremely popular to surf the bore. Why? Be-
cause, unlike an onshore breaker, a skilful surfer can follow the
wave for mile after mile after mile. In March 2006, Steve King,
a railway engineer and father of three from Gloucestershire, set
a world record for the longest continous surf, riding the Severn
bore for a distance of 7.6 miles (12.2 km), which he increased to
9.25 miles a few years later. He became something of a specialist
and at the age of 48 braved a river full of crocodiles to set a new
world record by riding Bono tidal wave on the Kampar River in

Sumatra, Indonesia, even performing a handstand in the process.
This record was recently beaten by an Australian, James Cotton,
travelling 10.6 miles on the same river in March 2016.

So, what have we learned? Even though I have yet to learn
to surf, I have tried to convey here just a small amount of the
fascinating maths and mechanics inspired by water waves. I hope
that I have not attracted the epithet that another colleague of mine
once gave to a local who accosted him in a riverside car park early
one morning as they waited for what turned out to be a rather pa-
thetic wave; the Severn bore!
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A Dr Writes on Climate Science

I despair at the poor understanding of climate science ex-
pressed in the ‘Doctor Writes’ column (Mathematics Today, 
April 2017). I have worked tirelessly within the IMA to raise 

the profile of the exciting mathematics of climate dynamics, in-
cluding contributing to the IMA leaflet on Mathematics Matters: 
Predicting Climate Change (2010), chairing the organising com-
mittee for the IMA Conference on Mathematics of the Climate 
System (2011), and winning the IMA’s fiftieth anniversary essay 
competition with an article that was published in the OUP book 
50 Visions of Mathematics (2014).

Imagine, then, my disappointment at seeing my subject rub-
bished by somebody who has no understanding of it, and my 
frustration at them being permitted to do so via generous col-
umn inches in the IMA’s official magazine. The inclusion of a 
disclaimer at the end of the article, in which the editorial board 
distance themselves from it, does not help. 

I would like to offer three suggestions for improvement. First, 
let there be no more anonymous opinion pieces: people express-
ing views should have their names published. Second, stop 
blurring the lines between opinion pieces and scientific articles: 

Selberg and the Riemann Hypothesis

Thank you to Graham Hoare for his lovely article about 
Atle Selberg in the June issue of Mathematics Today. 
Despite using maths all the time in my working life, I am 

gobsmacked by the sort of mind that Atle (and everyone else 
mentioned in the article) obviously had – to have such insights 
and make such discoveries. It is inspiring to read about them! 
The article was beautifully clear.

And I enjoyed Selberg’s comment on the Riemann Hypothesis.
Malcolm Macleod FIMA

QinetiQ

there is no such thing as an ‘opinion’ on whether the climate is 
changing, as the evidence clearly shows that it is. And finally, if 
opinion pieces are going to stray into scientific territory, have 
them peer-reviewed for scientific accuracy: not one of the nine 
references cited in the offending article was from a peer-reviewed 
source, as even the most cursory of reviews would have detected.

Applied mathematics is crucial to our understanding of the 
climate system. Therefore, the IMA has an important role to play 
in the debate about climate change. I do hope that the editorial 
board of Mathematics Today will consider the above suggestions 
and work towards eradicating erroneous and misleading content.

Paul Williams FIMA
University of Reading

The column ‘A Doctor Writes…’ is necessarily anonymous and de-
liberately presents personal opinions in order to encourage topical 
debate among mathematicians. It achieves this well, as evidenced 
by its considerable popularity in last year’s readers’ survey. Nev-
ertheless, the Mathematics Today Editorial Board will consider 
Professor Williams’s three suggestions at its next meeting.

David F. Percy CMath CSci FIMA
Chair, MT Editorial Board
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