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In this article, we look at an unconventional method for calculat-
ing areas of any polygon on an integer lattice, namely, Pick’s theo-
rem. We present the theorem and give a brief inductive proof. We
then study a series of interesting applications, including a proof
of the fact that an equilateral triangle cannot be drawn on an in-
teger lattice having its vertices at grid points. We also give ex-
amples of problems from other fields of mathematics that can be
approached via Pick’s theorem. Finally, we show the unexpected
result that Pick’s theorem does not generalise straightforwardly
to three dimensions, but has other higher-dimensional analogues.

1 Introduction

P ick’s theorem is an example of a theorem that is not
widely known but has surprising applications to various
mathematical problems. At its essence, Pick’s theorem

is a geometrical result, but has algebraic implications, as we will
see later. The theorem was first published in 1899 by the Austrian
mathematician Georg Alexander Pick [1].

We now introduce the main result due to Pick by way of a sim-
ple physical application. Let us suppose that an artist is employed
to paint a giant mosaic that consists of numerous square tiles.
Furthermore, let us assume that the artist is an ardent admirer of
Cubism, and the shape to be painted is a complex-looking poly-
gon (possibly concave) with vertices that lie at intersections of
the tiles (see Figure 1 for a sample representation).

Figure 1: A concave polygon on a lattice

Since the mosaic is quite large, ideally, he would like to know
how much paint he would need in advance. This amounts to ac-
curately calculating the area of the polygon. However, its shape is
quite complicated and even a simple triangulation would require
lots of intermediate steps to obtain the final answer. If the artist
knew Pick’s theorem though, he would solve this seemingly la-
borious problem very quickly. It involves a simple counting of
lattice points in a way that will be made more precise in the next
section, but gives fascinating and useful results.

2 Pick’s Theorem

We now state Pick’s theorem [2] and give an outline proof of it.

Theorem 1 (Pick’s Theorem). Given any simple polygon whose
vertices lie on an integer grid, its area, A, is calculated according
to the following formula:

A = i+
b

2
− 1, (1)

where i is the number of grid points inside the polygon, b is the
number of grid points that lie on the boundary of the polygon,
and by ‘simple’ we mean a polygon without holes.

Proof. The classical proof, which is rather long-winded, is of in-
ductive nature and consists of three steps. Assuming that the for-
mula (1) is valid for a polygon and a triangle, we can prove that it
is valid for the figure that is obtained by gluing the polygon and
the triangle along a common edge [3]. This is done by a pure
counting of the interior and boundary points in the newly formed
figure, where it helps to introduce a variable for the number of
boundary points along the common edge. The next step is to ob-
serve that any polygon can be triangulated (using diagonals, for
example). Finally, the third step is to show that Pick’s theorem
is valid for triangles, which, together with the first two steps and
simple induction, gives the proof of the theorem. To show this,
one needs to go through a series of simple steps proving the result
for rectangles with sides parallel to the grid lines, right-angled
triangles obtained from those rectangles by cutting them along
the diagonal, and finally for general triangles by attaching right-
angled triangles to their sides, thus turning them into rectangles,
and then using the previous parts.

A slightly more illuminating proof, which relies on a similar
inductive argument, associates angles to each point of the poly-
gon and is given in [1].

3 Results and discussion

Applying Pick’s theorem to the artist’s polygon in Figure 1, we
see that i = 0, b = 25, and therefore the area is immediately
calculated to be A = 23/2.

At a first glance, it might appear that Pick’s formula is quite
restrictive in that the polygon under consideration has to have its
vertices lying on grid points. However, if this is not the case, we
can always refine our grid sufficiently that the polygon vertices lie
approximately on grid points, and thus obtain an arbitrarily good
approximation to the area of the polygon. Similar reasoning ap-
plies to curved shapes, since we can always approximate them by
polygonal ones and then superimpose a fine enough grid. In prac-
tice, one can draw a square grid on a transparent piece of paper
and lay it on top of the shape whose area is sought.

A useful property of Pick’s formula, that we immediately
note, is that it is invariant under shearing of the lattice, since
this changes neither the area of the polygon, nor the number of
its interior and boundary points. Also, scaling the distance be-
tween grid points in one direction simply scales the area of the
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polygon. These two observations can be used to show that Pick’s
formula is valid for sheared (triangular) grids as well, provided
we take account of any scaling in the direction perpendicular to
the shearing one. In Figure 2, we show a sheared grid which con-
sists of equilateral triangles. To accommodate equilateral trian-
gles the grid spacing in the ‘vertical’ direction has been squashed
by a factor of

√
3/2. Thus, Pick’s formula for this grid is given by

(1), multiplied by this factor. Therefore, the area of the polygon
in Figure 2 is (6 + 5/2− 1)

√
3/2 ≈ 6.5.

Figure 2: A polygon on a sheared lattice

Finally, Pick’s theorem readily generalises to polygons with
holes. The modified formula becomes [2]

A = i+
b

2
− 1 + n, (2)

where n is the number of holes. The proof involves a simple
counting of the interior and boundary points of the polygon with
the holes, without the holes and the holes themselves. In Figure 3,
we show a simple triangle with one hole. Using (2), the area is
then A = 0 + 11/2− 1 + 1 = 5.5.

Figure 3: A polygon with a hole

4 Curious applications

Pick’s theorem can be used to tackle a number of problems in dif-
ferent fields of mathematics. To give a flavour of this, we present
two separate problems: geometric and algebraic.

Although square integer grids are ubiquitous in our life, it is
a fact that one cannot draw one of the simplest figures, namely,
an equilateral triangle with its vertices being grid points on such
a lattice. Some standard proofs involve tedious algebra and
trigonometry, whereas Pick’s theorem proves the result immedi-
ately. Suppose we have drawn an equilateral triangle with sides
of length d on a square grid. Then, its area is given by the well-
known formula A =

√
3d2/4. Since the vertices of the triangle

are integer points, then d2 is an integer (by Pythagoras’ theorem,
for example), and thus the area is an irrational number. However,
Pick’s formula on square grids always gives a rational area. This

contradiction proves the initial claim. The same argument shows
that regular hexagons cannot be drawn on a square integer grid
either.

Another interesting application arises in the so-called Farey
sequences, Fn. These are sequences of rational numbers of
the form a/b in an increasing order with 0 < a < b < n
and a and b coprime (gcd(a, b) = 1). For example, F3 =
{0/1, 1/3, 1/2, 2/3, 1/1} [4]. One property of such sequences
is that if a/b < c/d are neighbours of a Farey sequence, then
bc − ad = 1. This can be proven easily by Pick’s theorem, once
converted into a geometrical problem. We, thus, represent each
fraction a/b as an integer point with coordinates (b, a) on a square
grid. Noting that a/b is the slope of a ray that passes through the
origin and the point under consideration, we see that all points
from the Farey sequence can be obtained in the correct order by
sweeping a ray through the origin and noting down each lattice
point it hits, provided we always take the closest point to the origin
if several lie on the same ray (this is because of the requirement
that a and b be coprime).

In Figure 4, we show an example of a Farey sunburst, obtained
by mirroring the polygonal curve that we get for F6 in the first oc-
tant to obtain a closed shape. As a side note, its area is given by
Pick’s theorem and is (1 + 96/2− 1) = 48. If we now consider
two neighbouring elements in a Farey sequence, a/b < c/d, then
we first note that there are no lattice points along the segments
that connect these points to the origin apart from the end points,
again because of coprimality. Furthermore, the segment connect-
ing the two points cannot contain other points either, since these
points are assumed to be neighbours, and thus sweeping a ray be-
tween them will not encounter any other points. This is also the
reason why there are no interior points in the triangle consisting
of the two points and the origin. Thus, by Pick’s theorem, this
triangle has area of 1/2. However, from analytic geometry, this
triangle has area given by [4]:

(1/2) det

(
c d
a b

)
= (bc− ad)/2.

Hence, the result follows.

Figure 4: Farey sunburst
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5 A Surprising result in three dimensions and
other generalisations

Intuitively, one might hope that Pick’s theorem can be easily gen-
eralised to three (or more) dimensions for volume of solids, etc.
However, in 1957, J. Reeve produced an example of what is now
known as the Reeve tetrahedron (see Figure 5), which shows that
Pick’s theorem does not have a direct analogue in three or more
dimensions [5]. He considered a tetrahedron with vertices at
(1, 0, 0), (0, 1, 0), (1, 1, 0), and (0, 0, r), where r is a positive
integer. It can be easily seen that there are no interior or bound-
ary points in this tetrahedron regardless of what r is. However,
the volume is calculated to be r/6, and thus takes infinitely many
values for different r.

Figure 5: Reeve tetrahedron with r = 1 and r = 2

Nevertheless, we remark that Pick’s theorem still has some
close analogues in more than two dimensions in what are known
as Ehrhart polynomials, which contain information about the re-
lationship between the number of interior points and volume of
general (dilated) polytopes [3].

6 Conclusions

We have looked at Pick’s theorem, a beautiful and simple math-
ematical result with numerous surprising applications in various
fields. We considered a few simple generalisations in terms of
sheared and scaled grids, polygons with holes, and explained how
Pick’s theorem provides a good approximation for area calcula-
tions even for curved shapes or polygons whose vertices do not
necessarily lie on lattice points, provided we take a fine enough
grid. We have studied two separate problems, namely, the im-
possibility of drawing an equilateral triangle (and hexagon) on
an integer grid (which, however, could be done on a sheared grid
such as the one described in Section 3) and a property of Farey
sequences. Rather surprisingly, Pick’s theorem does not directly
generalise to more dimensions, but it is a fundamental result that
still finds applications in the most unexpected places.
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