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Elimination of infectious diseases

T he year 2019 marks a number of important anniversaries:
75 years since D-Day, 50 years since both the Stonewall
riots and the first moon landing and 30 years since the fall

of the Berlin Wall. It also marks 40 years since the global eradica-
tion of smallpox – the first infectious disease to be driven extinct
by modern medicine. Prior to eradication, smallpox had existed
for at least 3000 years and, with up to a 30% mortality rate, was
considered one of the most feared human diseases in the world.
Now, thanks to a global vaccination campaign, the virus is be-
lieved to exist only in two secure laboratories and there have been
no reported cases since 1978.

Figure 1: A depiction of scrotal enlargement caused by lym-
phatic filariasis in a patient in Samoa in the early 1900s.

The success of the smallpox programme led to an increase in
discussions about the eradication of other diseases, such as po-
lio, mumps and guinea worm. In 1993, The Carter Center, a
not-for-profit organisation founded in 1982 by former US Pres-
ident Jimmy Carter, published a report declaring six diseases, in-
cluding these three, as potentially eradicable with existing tools.
Malaria eradication, previously abandoned after being unsuc-
cessfully targeted in the 1950s and 1960s, also made a return to
the global health agenda in 2008. Whilst the only other disease
to join smallpox in the last 40 years has been rinderpest, a live-
stock disease eradicated in 1999, there has been some significant
progress. Notably, global efforts have brought cases of guinea
worm down from almost 100 000 in 1993 to only 30 in 2017.

Lymphatic filariasis was one of the diseases earmarked for

Figure 2: Pharaoh Mentuhotep II.
His swollen legs are characteris-
tic of lymphatic filariasis.

eradication in 1993. Collo-
quially known as elephanti-
asis, lymphatic filariasis is a
mosquito-transmitted worm
infection that can cause last-
ing and debilitating disabil-
ity if left untreated (Fig-
ure 1). Although reliable
written records of the dis-
ease date back only to the
16th century, historians ar-
gue it has been around for
a lot longer. Due to the
distinctive nature of some
disease symptoms, such as
the severe swelling of limbs,
there are ancient artefacts
dating all the way back
to Pharaoh Mentuhotep II’s
reign over Ancient Egypt
around 2000 bce that poten-
tially provide evidence of fi-
lariasis in the ancient world
(Figure 2).

Four thousand years
later, in 2000 ce, infection
was still widespread across
tropical regions, with 120

million people estimated to be at risk. Due to over 7 billion treat-
ments being delivered through mass drug administrations (MDA,
where large proportions of the population are treated at the same
time, usually yearly), the number of infected people is thought to
have lowered substantially since the millennium, with 14 coun-
tries having been validated as reaching less than 1% prevalence
across their endemic regions [1, 2].

The question which now faces the Global Programme to
Eliminate Lymphatic Filariasis (GPELF) is whether and where
lymphatic filariasis is likely to be eliminated once this low level
of infection is achieved. The mathematical literature on infectious
diseases has been crucial in informing the discussion on eliminat-
ing infections, and a number of challenges remain [3]. Here we
address the particular challenges of modelling the elimination of a
sexually reproducing parasite which is transmitted by a mosquito.

Lymphatic filariasis elimination

Evidence from an elimination campaign in China suggested that
once the prevalence of lymphatic filariasis fell below 1%, infec-
tion did not re-emerge [4]. Whilst it was acknowledged that this
was data from only one location, it was a key piece of evidence in
support of the global programme’s choice to set their long-term
goal of elimination. The empirical data has shifted again recently,
with evidence of ongoing transmission in Sri Lanka and Samoa,
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even once this prevalence has been reached and maintained for
several years [5].

Lymphatic filariasis is a worm infection, in which both male
and female worms must infect the same host to reproduce and
cause onward transmission. As with all parasites of this type,
there is a classically skewed distribution of the number of worms
across hosts, with some people hosting many more worms than
average. In the 1980s, as summarised in their well-known book,
Anderson and May formulated a classic deterministic model and
illustrated a key feature of this system – the elimination break-
point [6]. As transmission increases (e.g. the number of mosquito
bites increases) the system develops a stable equilibrium mean
worm burden, which increases with the transmission rate. How-
ever, the system also has an unstable equilibrium for low worm
burdens at the same transmission rate (Figure 3). This unstable
equilibrium acts as a breakpoint, where transmission cannot be
maintained if disease levels fall below this point.

According to this theory, the lymphatic filariasis breakpoint
could lie at prevalence levels of much less than 1 in 1000 or 1 in
10 000 infected individuals [7]. Such low prevalence is extremely
hard to measure and requires practically implausible sample sizes
for a large-scale programme. Therefore there has, for a long time,
been a disconnect between the mathematical and empirical data
on this process.

Once infection levels are low, we know that stochastic pro-
cesses become important, and it is likely that the transmission
process may fade out to extinction from levels much above those
of the breakpoint. Here we outline how a branching process ap-
proach, which takes account of key parts of the life cycle, can help
us estimate whether and when lymphatic filariasis is likely to be
eliminated once prevalence drops below 1%. This approach is in-
formed by work on related worm infections by Cornell et al. [8].

Branching process extinction

The most common branching process formulation is the Galton–
Watson process, which we outline here before adapting it for lym-
phatic filariasis (Figure 3, right).

LetXn denote the number of infectious individuals in genera-
tion n and for each infectious individual, i, let Zn,i be the number
of new infectious cases directly caused by that individual. Zn,i

are independent and identically distributed random variables over
n ∈ 0, 1, 2... and i ∈ 1, ..., Xn.

Assuming we start a chain of infection with one infectious
individual, X0 = 1, we then have the recurrence equation,

Xn+1 =

Xn∑
i=1

Zn,i . (1)

The extinction probability of one chain of infection is
the probability that Xn = 0 for some n > 0, or that
limn→∞ P [Xn = 0].

Define pm (m = 0, 1, 2, . . .) as the probability of an individ-
ual producing m offspring and dm as the probability of extinction
by the mth generation; d0 = 0 as we start with one individual
in generation 0. Hence dm is an increasing, bounded sequence
(0 = dm ≤ d1 ≤ d2 ≤ . . . ≤ 1) and therefore converges to some
limit, d, where 0 ≤ d ≤ 1 is the ultimate extinction probability.

d1 = p0 (2)

d2 = p0 +
∑
j=1

pj(d1)
j (3)

...

dm = p0 +
∑
j=1

pj(dm−1)
j . (4)

We can write this as

dm = f(dm−1) (5)

where f is the ordinary generating function:

f(d) = p0 +
∑
j=1

pjd
j . (6)

Since dm → d, we can find the probability of ultimate extinc-
tion by solving d = f(d).

We want to show that d is the smallest non-negative root of
this equation. Take b > 0 also a root with b �= d and b = f(b),
then we have that d1 = f(0) ≤ f(b) = b, hence d1 ≤ b. Assume
dk ≤ b for some k, then

dk+1 = f(dk) ≤ f(b) = b , (7)

since f is an increasing function. Hence, by induction d is the
smallest non-negative root. The function, f , is also convex and

Figure 3: Theory behind elimination of a macro-parasite infection. In the deterministic system (left), if transmission is high
enough then there is an endemic equilibrium and an unstable equilibrium, or breakpoint – a mean worm burden that cannot
sustain transmission. In the branching process representation of the system (right), each infectious individual has a probability
of infecting a certain number of others and this is used to give a probability that the infection will fade out.

Breakpoint extinction Stochastic extinctionBreakpoint extinction Stochastic extinction
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hence has at most two real roots. Since one is always a root,
f(1) =

∑
j=0 pj = 1, then the probability of ultimate extinc-

tion is only less than one if the second root both exists and lies
between zero and one.

By considering the gradient of f at one, f ′(1) =
∑

j=1 jpj ,
we can determine the location of the other root – namely there is
only a second root in [0, 1] if f ′(1) > 1. Notably this gradient,
f ′(1), is equal to the average number of secondary cases caused
by a single infectious individual, often called the basic reproduc-
tion number to describe early outbreak dynamics. Since we are
considering a situation where there is a background population
prevalence that has been artificially lowered to 1%, we call this
the effective reproduction number, Re.

In our model (further details below), we want to take account
of the heterogeneous worm distribution across hosts, as it is a
key feature of the system. Therefore, it is not possible to directly
calculate either the effective reproduction number or the prob-
ability of extinction, but both can be calculated numerically by
considering the outcome distributions of stochastic simulations.
In particular, by calculating the proportion of simulated individ-
ual infections that result in each number of onward infections, we
can generate a discrete numerical approximation of our secondary
case offspring probability distribution.

From this, we can iterate through each generation to find the
probability that extinction has occurred. This probability con-
verges over time and, if sufficient generations are considered, can
be used to approximate the ultimate extinction probability, d.

Lymphatic filariasis model

To estimate the extinction probability for lymphatic filariasis, we
simulate a population of 1000 individuals, with variable infection
risk, of whom 1% are productively infected (producing transmis-
sible offspring, microfilaraemia, mf), a proportion are unproduc-
tively infected and the remainder are uninfected (Figure 4).

Figure 4: The population of infected and uninfected individu-
als, with their variable risk of infection shown by shading.

We then calculate, for a randomly infected individual, the
number of onward productive infections they produce according
to a model of the life cycle (Figure 5). An infection lasts for a
randomly selected period of time (exponential, mean 1/r, the es-
timated fecund lifespan, 6 years), and has a lifespan equal to the
mean human life expectancy. This individual has a risk of being

bitten relative to the rest of the population (gamma, mean = 1),
which, depending on the annual bite rate (ABR), the expected
number of bites per human per year, generates the expected
number of bites received during their infectious period. For each
bite, there is a probability, c, that the mosquito becomes infected.

Each mosquito then has an exponentially distributed life ex-
pectancy (mean 1/g, 6.9 days) and has to survive an incubation
period (also exponential, mean = ν, 8.5 days). From this we can
derive the probability a mosquito survives to infectiousness and,
using a binomial distribution, calculate the total number of in-
fected mosquitoes, V , which survive the incubation period. The
number of infectious bites caused by these mosquitoes is then
Poisson distributed at a daily rate, f = 0.335, per mosquito, and
of these bites only a small proportion, b � 1, will successfully
lead to a productive infection. The efficacy of transmission from
mosquito to host is so low due to the route the larvae must take to
establish; rather than being injected into the bloodstream during
the bite, the larvae must instead independently fall onto the skin
and find the hole left by the mosquito after feeding.

This describes the number of new adult worms Y , that are es-
tablished in humans resulting from the entire duration of this one
individual’s infection (one distinct outcome per iteration, creat-
ing a distribution). From the total number of new adult worms, Y ,
we can derive the effect on prevalence by sampling Y individuals,
with replacement, according to bite risk. Each time an individual
is sampled they gain 1 adult worm. We then compare new worm
burdens with previous worm burdens – how many new infectious
(≥2 worms) cases are there that were previously not infectious
(≤1 worm)? This gives our number of secondary infections, Z.

Then the mean number of new infectious cases is Re. If
Re < 1 then eventual extinction will occur – implying that preva-
lence is below the theoretical system breakpoint. However, if
Re > 1 then extinction is not guaranteed but may still occur. We
need to consider the offspring distribution of the branching pro-
cess, pj being the probability of having j secondary cases, which
we approximate by the scaled frequency of secondary infectious
case counts, in order to calculate the probability of extinction.

Extinction probability

Using these simulations, we can characterise the probability of
extinction from a starting condition of 1% prevalence (Figure 6,
orange). When the ABR is low, then infection is highly likely to
fade out, but this probability declines as the biting rate increases.
This emphasises the importance of local context in determining
the extinction probability from this endpoint. We additionally
simulated the curve for a halving of the endpoint – a prevalence
of 0.5%. This, of course, increases the probability of extinction,
but would require much larger sample sizes to evaluate.

Figure 5: Model of the transmission cycle of lymphatic filariasis.
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Figure 6: The probability that transmission will become extinct
for different ABRs and different starting prevalences.

So, what are realistic biting rates in endemic areas? There are
remarkably few estimates of biting rates in lymphatic filariasis
endemic areas, with the majority coming from malaria endemic
areas (some of the same mosquitoes transmit malaria). How-
ever, it is likely that while the majority of places may have less
than 10% baseline prevalence, which is related to moderate biting
rates, some have very high prevalence, equating to ABRs in the
10 000 range upwards [7, 9].

In addition to the ABR, we know that locations vary in terms
of the characteristics of the mosquitoes and also in how skew the
distribution of worms is between people. Again, we have remark-
ably few measurements from which to evaluate these parameters,
suggesting that there is much uncertainty in these estimates.

Implications

These analyses lead to a number of policy-relevant implications:
• Adjusting the endpoint to local conditions: The GPELF

currently has one surveillance strategy for locations with
the same mosquito and worm species. Fully tailoring
strategies to local epidemiology would improve utility, but
the cost of evaluating the local epidemiology is likely to far
exceed that of the existing surveys, prompting the need for
adaptive survey designs.

• Adjusting the endpoint to capture variability: Recent em-
pirical evidence suggests the current survey does not cap-
ture ongoing transmission. By altering the survey de-
sign, through different diagnostics, measuring mosquitoes
or more detailed spatial sampling, it will be possible to pick
up areas of high transmission earlier.

• Timelines: The theory of branching processes also allows
us to consider likely timelines to extinction. As we know
from the deterministic model, the epidemic growth rate for
a worm with a lifespan of the order of a decade is extremely
slow [6]. Therefore infection can oscillate at low levels for
many years before either re-emerging or fading out – a chal-
lenge that will need investment in long-term surveillance.

• Improving biological knowledge: Although we have not
presented the details here, these methods have been used to
demonstrate that variability in parameter estimates for this
poorly studied disease can change extinction probabilities
dramatically. This highlights the need for both refinement
of the experimental evidence base and for careful selection
of parameters from the literature when building models.

Concluding remarks

The elimination of an infectious disease requires a number of
pieces of the puzzle to work together. Biological plausibility, usu-
ally due to the availability of a particular tool, such as a vaccine,
or drugs donated for MDA, together with political will and fund-
ing at all levels, are essential parts of the puzzle. Mathematical
modelling can inform our understanding of the biological plausi-
bility, identifying important drivers of success and informing the
design of not only interventions, but how targets are set, measured
and evaluated.

In the case of lymphatic filariasis, hopes for elimination in
the coming decades are high. The slow epidemic growth rate, the
lack of amplification in the mosquito (a mosquito can only trans-
mit as many worms as they ingest, usually fewer), the low proba-
bility of infection of a host and the hope that global development
will improve the living conditions of those exposed to these dis-
eases mean that there are many reasons to expect that elimination
is possible. The branching process presented here, whilst mathe-
matically relatively straightforward, provides a practical basis for
informing policy discussions. In particular, it shows that there
are likely to be many areas where additional interventions and
surveys may be needed. In these areas mathematical and statis-
tical modelling in its many forms will continue to be central to
discussions on how to identify, manage and control infection.
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