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Abstract

This talk discusses efficient and reliable Finite Element Methods to simulate the
thermo-mechanical response of high explosives. A key motivation is the modelling of the
initiation of shear bands in materials such as HMX. The localised plastic deformation as-
sociated with a shear band leads to the formation of hot spots and can subsequently lead
to thermal runaway and potentially serious consequences. To prevent and predict thermal
runaway it is often typical practise to use standard finite element methods which struggle
to accurately resolve the sharp gradients associated with these thermal and mechanical
features which may lead to unphysical predictions of the dynamics within high explosives.
The numerical methods presented in this talk aim to provide efficient and reliable tools
towards modelling the initiation of shear banding and thermal runaway. We consider two
approaches: adaptively generated meshes based on mathematically rigorous estimates of
the numerical errors, and enriched finite elements. These methods are demonstrated for
thermal and elastic problems respectively, as they arise in reduced models when either
the thermal or mechanical dynamics can be eliminated in the modelling. We first present
results based on adaptive finite elements for non-linear thermal problems. Steep tem-
perature gradients are resolved by appropriate mesh refinement procedures. Steered by
indicators for the accuracy of the solution, the algorithm automatically resolves hot spots
on a refined mesh, significantly reducing computational costs, see for example (Gimper-
lein and Stocek 2019). Secondly, we consider space-time enriched finite elements (also
known as generalised finite elements) which include a priori physical information into
the approximation space. This a priori information could represent localised wave-like
features. The modelling can effectively capture features occurring at different spatial and
temporal scales (Laghrouche et al. 2005; Perrey-Debain et al. 2005). Here we consider a
first order formulation of the wave equation (Barucq et al. 2017) and choose plane-wave
enrichments (Petersen et al. 2009).

1. Introduction and Motivation
Improper handling of energetic materials, such as accidental mechanical or thermal in-
sults, may lead to thermal runaway with its potentially disastrous consequences, as seen
with Beirut disaster on 4th August 2020 Ghantous; Prothero (2020). Of particular inter-
est is the initiation of shear bands, a strain-localisation phenomenon which is expected
to play a role in HMX plasticity. The localised plastic deformation leads to the formation
of hot spots, which may subsequently cause ignition on time scales long after an initial
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mechanical insult. While experiments can provide insights into the dynamical evolution,
they are limited by experimental, financial and safety constraints. Mathematical models
may provide qualitative and quantitative means to determine the behaviour of a mate-
rial under an insult, taking into account the coupled mechanical, chemical and thermal
dynamics inside the energetic material. They may predict the internal deformation and
the location and time scales of a potential ignition Hager et al. (2012). To understand
and quantitatively predict key mechanisms of the onset of a reaction in an energetic ma-
terial, based on a mathematical model, requires efficient and reliable numerical methods.
Current hydrocodes can fail to represent the extreme localised thermal and mechanical
effects in shear bands, due to the severe temperature and strain gradients associated with
these problems (Peter Hicks). For example, Peter Hicks discusses the failing of various
numerical packages when modelling shear bands. It is further of interest to separate the
uncertainties of the mathematical from the challenges of its numerical simulation. We
here present preliminary results for two complementary numerical approaches based on
advanced finite element methods. Adaptive finite elements efficiently resolve localised
features by automatic mesh refinements in the regions of large numerical error. The un-
derlying a posteriori error estimates allow us to quantify the accuracy of the numerical
result and refine it until a prescribed tolerance is achieved. This is illustrated in recent
work (Gimperlein and Stocek 2019) on contact problems corresponding to a mechanical
insult or friction. We here describe its analogue for situations potentially leading to ther-
mal runaway. The second numerical approach, enriched finite elements (EFEM), allows
us to include available physical information into the numerical approximation spaces.
Such information about the solution may circumvent the numerical difficulties and in
this way achieve engineering accuracy with a numerical cost reduced by orders of mag-
nitude (Iqbal et al. 2017; Drolia et al. 2017). The approach we present here relates to
recent work on Trefftz methods (Barucq et al. 2017; Moiola and Perugia 2018).

To be specific, we consider thermo-mechanical models relevant for energetic materials
of the form of a heat equation

ρCv
∂u
∂t
= σij ε̇ij + ρṙ + κ∆u (1.1)

for the temperature u. Here ṙ is the rate of heat, per unit mass, being produced by a
chemical reaction in a material, κ the thermal conductivity, ρ the density and Cv the
specific heat capacity. The mechanical properties ε̇ and σij correspond to the strain
rate, respectively the stress. As governing equations for the mechanics, a combination
of non-linear elastic and viscous behaviour may be relevant. Bebernes and Lacey (2004)
discuss such models for shear banding and Ohmic heating. By integrating the mechanical
problem analytically for specific geometries, Bebernes and Lacey (2004) derives effective
non-linear heat equations of the form

∂u
∂t

−∆u = λr(u) + g(u) ·
ꢀZ

Ω
g(u)dΩ

ꢁ−p

, (1.2)

where the non-local, non-linear term g is determined by the temperature dependence of
the mechanical properties. In this way, a large class of heat-like equations is obtained,
and their efficient numerical approximation becomes relevant. On the other hand, we
consider elastic problems under a localised point insult. To illustrate our approach, the
model problem of the scalar wave equation is considered. Extensions to elastic problems
will be addressed in future work.
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2. FEM Set Up and Discontinuous Galerkin Formulation
In the following sections we will be discussing the two methods mentioned above: Adap-
tive FEM and EFEM. To do this effectively we will be considering the basic set up of
both methods initially and then discussing how we extend from a standard FEM method
into these more complex regimes. We will be considering toy mathematical problems in
the form of a heat equation for adaptive FEM and an acoustic system in EFEM.

2.1. Thermal Problem
First we discuss the set up of a standard and then adaptive FEM scheme. The theory
of the finite element method approximations Thomée (2006) and its implementation
as a MATLAB algorithm was largely informed by Larson and Bengzon (2013). For a
convenient example let us consider a heat equation,

∂u
∂t

−∆u = f(u), (2.3)

where the temperature u maybe be dependent on space and time. Now we give a general
template for FEM. To do this we follow a five step approach to obtain an approximate
solution to the variational form:
(a)Reformulate the PDE into variational form
(b)Discretise the domain, Q = Ω× [0, T ] = Ω× T , into elements
(c)Define a suitable basis for Sh given the discretisation
(d)Generate the system of algebraic equations
(e)Solve the system and obtain the approximate solution.
In step one we are tasked with finding the variational formulation

Z

Ω
utv +

Z

Ω
∇u · ∇v =

Z

Ω
f(u)v (2.4)

where v is a test function such that v ∈ H1
0 .

Step 2 of the process, discretising Ω, is done by splitting the domain into a finite family
of disjoint elements. This discretised domain shall be denoted by Th and the nodes by
Nh. The collection of these nodes are denoted as {Pi}Nh

i=1. We know that the variational
solution, u, belongs to H1

0 and that this is an infinite dimensional space. The aim to
approximate u from an Nh-dimensional subspace Sh. To the ith node, Pi, we assign a
piecewise linear function, φi which takes the value 1 at Pi and 0 otherwise. The set
{φi}Nh

i=1 defines a basis (in our case piecewise linear) for the subspace Sh, from which we
shall approximate the solution of (2.4). This approximation shall be defined as uh ∈ Sh
and clearly for some {αi}Nh

i=1, such that αi : (0, T ]→ R for all i ∈ {1, ..., Nh}, we have

uh(., t) =
NhX

i=1

αi(t)φi, (2.5)

for some fixed t. Now we substitute this approximation into equation (2.4). Note, every
basis function φj belongs to H1

0 and as a result constitutes a suitable test function.
For the discrete parabolic problem we introduce the space-time bilinear form BDG(·, ·)

given by

BDG(u, v) =
NhX

k=1

Z

T
h∂tu, vi+∆(u, v)dt, (2.6)
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whereby we immediately draw the weak formulation,

BDG(uhτ , vhτ ) +
NhX

i

hu−hτ , [vhτ ]iΩ = hf, vhτ iQ, (2.7)

for τ the particular time step in T and where [·] = [vhn+t + vhn−t ] represents a jump
in time for + being from above and − from below. Now, since (2.7) holds for each
j ∈ {1, ..., Nh}, for every fixed t > 0 we have a system of equations. This can be written
more compactly as the matrix equation

I(α(t+ h)− α(t)) +Aα(t+ h) = F(t). (2.8)

The matrices I and A are each Nh×Nh matrices. As mentioned previously the matrices
I and A are called the mass and stiffness matrices respectively and the vector F(t) is
referred to as the load vector (Thomée 2006). We look to improve the standard scheme to
fully resolve complex physical problems by employing the following adaptive algorithm
for elements within the mesh:

Adaptive Algorithm

1. Set up the problem
•Create a coarse mesh
•Define the accuracy level that is desired

2. Solve the linear system
3. Compute the error indicators for each element

•Stop iterating if the desired accuracy is attained
4. Mark the elements in need of refinement
5. Refine the marked elements
6. Repeat the process from (2)

2.2. Wave Propagation of an Elastic Problem
As discussed in Section 1 we will also be considering enriched finite elements for an
acoustic system. The motivation behind focusing on the acoustic wave equation is because
of its practical applications - ranging from deformation in energetic materials to railways
and tidal power. In this paper we will be considering the first order acoustic system,






1
c2ρ

∂p
∂t
+∇ · v = f1

ρ
∂v
∂t
+∇p = f2

p(·, 0) = v(·, 0) = 0
pt(·, 0) = vt(·, 0) = 0

, (2.9)

where we have unknowns as the pressure (p) and velocity (v) with constants of density (ρ)
and acoustic wave speed (c). For this preliminary work we will consider these constants as
1, to ease the numerical experimentation. Before continuing on we should point out the
acoustic equation above can easily be re-written as the wave equation by differentiating
with respect to space in one PDE and time in the other. Once we do this we can eliminate
the common term to form the wave equation,

∂2p
∂t2

−∆p = f. (2.10)
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Our work first starts to differ in the initial stage of the the set-up when compared to a
standard FEM scheme. We pose the above system in the following space-time domain,
Q = Ω× [0, T ] - where Ω is the spatial domain and T is the final time. We further require
that each element, K, must be a subset of Q and thus spans both spatial and temporal
nodes. The main advantage of this is to allow us to enrich in both space and time, unlike
the previous works discussed in Section 1.
Now that the preliminaries have been set up, we should consider how we formulate the

problem. From (2.9) we find that the weak formulation is, noting that η and q are the
test functions,

X

K

−
Z

K
p
∂q
∂t
+ v · ∇qdV +

Z

∂K
p−[qn+t + qn−t ]ds =

X

K

Z

K
f1qdV, (2.11a)

X

K

−
Z

K
v
∂η
∂t
+ p∇ · ηdV +

Z

∂K
v−[ηn+t + ηn−t ]ds =

X

K

Z

K
f2ηdV, (2.11b)

where η is now a vector of two variables (η1, η2). This subtle change to the weak formula-
tion requires extra care when we compute these relevant gradients and divergences. Now
we should note that we will be considering the enriched finite element method in 2.5 di-
mensions. Now we define the ansatz function for the pressure (noting the approximation
for the velocity and the test functions are analogous),

ph(x, t) =
T̃X

m

QX

b

PmΠ(t)mG(b)
j,m(x, t). (2.12)

This is easily derived from the general FEM formulation (Section 2.1), with the multi-
plication of an enrichment function G(x, t),

ph(x, t) =
T̃X

m

NX

i,j

QX

b

Pj,mΛi,j(x)Π(t)mG(b)
j,m(x, t), (2.13)

where we include summations for space to account for the piecewise linear hat functions,
Λi,j(x). To arrive at (2.12) we simply need to bring the summation through onto the
spatial hat functions, noting that

P
i,j Λi,j = 1. We can easily apply the same idea to the

matrices of the system. A reasonable question, at this point, is why would we want to
remove the spatial hat functions? This is because we are computing a two-dimensional
Fourier series, where Pm is a Fourier coefficient. As a result we are able to use a Fourier
series approximation to populate a solution for all nodes in the problem. By this we mean
that we take one node in space, due to the removal of the hat functions, and then solve
the system with the appropriate enrichments before generalising the Fourier modes into
solutions for any given domain.

3. Numerical Experiments
3.1. Adaptive FEM

Here we will consider the applications of adaptive finite elements to a heat equation in a
qualitative manner. We will see that the problem being considered has the introduction
of a thermal insult in the centre of the circular domain, we should expect that the heat
diffuses across the domain, in a somewhat uniform radial manner. If we first consider the
static problem in a circular domain and with an initial condition of 0. We clearly see,
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(a) Mesh refinements in space at time t.
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Figure 1: Implementation of an Adaptive Finite Element Scheme.
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Figure 2: Error indicators of adaptively refined meshes in time with the initial condition
given by ũ0.

as expected, that the meshes will refine rapidly in time. As the insult occurs; we expect
a rapid increase in the number of elements around the impact point - Figure 2 This is
expected as one would reasonably think that the error will increase at this time. Then
when the heat transfer disperses we start to see some coarsening in the meshes as we no
longer have the large errors which are found in the steep temperature gradients between
elements. We can see that this refinement occurs in the following error plot.
Figure 1 shows how a static problem reacts to the introduction of a thermal insult. In
the image we can that there is some clustering around the centre of the mesh, where the
insult occurs. This is evidenced over four iterations above as we see the density of the
mesh increasing in each step. We then see from Figure 1b that there is clear convergence
within this method and that it is significantly quicker than the uniform FEM case. We
see that the rates of convergence for the adaptive FEM is 3

8 compared to the uniform
case of 1

4 so there is a significant speed increase on this method as expected. As a result
we can clearly see that there are significant advantages of using adaptive FEM when we
are considering problems associated with high explosives.
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3.2. Enriched FEM for Wave Propagation
3.2.1. Gaussian Impact
Now we consider an applicable application in the form of a Gaussian Impact. We first

define system (2.9) with the right hand side,

f(x, y, t) =






f1(t)f2(x, y)

(
0 < t < 2t0
(x− x0)2 + (y − y0)2 < R2

0
, (3.14)

where f1 and f2 given by (Collino and Tsogka 2001),

f1(t) = 4 exp
ꢂ
−π2f20 (t− t0)

2
ꢃ
, (3.15a)

f2(x, y) =
ꢀ
1−

(x− x0)2 + (y − y0)2

R2

ꢁ3

. (3.15b)

Here t0 = 1
f0 , f0 =

c0
hNL

is the central frequency, NL the number of points per wavelength,
h is the mesh size and c0 is the wave-speed. Qualitatively this function represents a
circular source centred at (x0, y0) which emits radial waves until the time reaches t = 2t0
and these will travel throughout the domain before reflecting (noting that the boundary
conditions are periodic) back into the emitting wave - this will show the complex structure
of interference patterns. This type of problem could therefore be related to many aspects
in the real world, for example these could be in a mechanical regime whereby we might
have an explosion or impact which expels a pressure wave - similarly to how we would
expect an explosive to detonate. To successfully consider this problem we need to choose
an appropriate set of enrichments functions. Noting that this problem will expel pressure
waves, it is reasonable to choose a plane-wave in the following form:

G(b)(x, t) = exp(i(k(b)x+ ω(b)(t− t0))) = exp(i(k
(b1)
1 x+ k(b1)2 y + ω(b)(t− t0))), (3.16)

where k = (k1, k2) are the wavenumbers, ω is the frequency and b = (b1, b2) ∈ Z rep-
resents the differing combinations of enrichments. We should further establish that one
must make a symmetric choice in the wavenumbers and the frequency. This means that
for every k, ω > 0 we also chose its corresponding negative value such that −k,−ω < 0.
The reasoning behind this is it allows one to choose a larger number of frequencies as
well as removing the complications from the additionally complex terms that are present
within the enrichments. If we now consider the results of this experiment, for k ∈ [−10, 10]
and ω = |k|, we initially see that the pressure at the source is far larger compared to the
other areas of the domain. As time progresses we see that the wave propagates radially
in a uniform manner until the wavefront hits the boundaries of the region.
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(a) t = 0.1. (b) t = 2.

(c) t = 6.

Figure 3: The time progression of the continuous Gaussian explosion over time for a
space-time enriched FEM.

Once the wave ‘hits’ the boundary we see that the periodic boundary conditions causes
a symmetric reflection on each corner. This then leads to both constructive and destruc-
tive interference, as we see in Figure 3c. This phenomena could be associated with a wave
impacting a hard surface and reflecting back into a material, in a simplified manner. This
approach could be further expanded by placing hard blocks of material in the domain to
see how to pressure interacts and reflects.
4. Conclusion
In this paper we have considered two problems: Adaptive FEM (Section 2.1) and Enriched
FEM (Section 2.2) for thermal and mechanical problems respectively. The purpose of
these approaches have been demonstrated by taking examples of thermal insults, say
an external heating of a high explosive. As one can appreciate when an explosive is
near its ignition energy we could expect a standard numerical scheme to struggle to
capture the intricate nature of runaway whereas using adaptivity we see that we are
able to resolve these complex dynamics. In a similar vein we see that Enriched FEM can
comfortably capture the wavelike dynamics of a Gaussian explosion - consider an external
mechanical insult on an explosive. The pre-requisite for this method is that we needed
a priori information to include in the scheme as seen with the inclusion of symmetric
plane waves. Then by the nature of the method we can generalise the Fourier modes to
an arbitrary mesh - as seen in Figure 3. In future works we will look to consider enriched
FEM with the inclusion of the spatial basis functions as well as looking to couple the
thermo-mechanical problem.
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