
Urban Maths: Computing Pi – Inefficiently!
Alan Stevens CMath FIMA

A t the time of writing, the roads
and pavements are icy and people
are slipping and sliding all over the

place. Seeing this brought to mind a weird
way of calculating the digits of π by count-
ing the collisions between sliding blocks.
More specifically, consider elastic colli-
sions between two blocks of mass M and
m that slide without friction, as illustrated
in Figure 1. When mass m hits the wall at
the right it rebounds elastically.

All collisions are elastic and there is no
friction, and so energy is conserved at all
times. When the two blocks collide with
each other momentum is conserved during
the collision. When mass m collides with
the wall momentum is not conserved; the
velocity of the mass is simply reversed.

continues! For M = 100Nm, then the
number of collisions will be given by the
first N + 1 digits of π!

If you don’t believe this, I don’t blame
you! I didn’t myself when I first came
across it, until I had done some numeri-
cal calculations to convince myself of the
connection. This is a ridiculously ineffi-
cient way to calculate π of course, but the
pattern was first published by G. Galperin
[1]. A beautiful visual simulation of the
process can be found on 3Blue1Brown’s
YouTube channel [2].

We can calculate the velocities of the
masses after each collision by making use
of conservation of energy, conservation of
momentum for the two mass collisions and
velocity reversal at the wall, as follows:

Figure 1: Sliding blocks

We will assume mass m is initially stationary (v = 0) a short
distance from the wall, and massM is moving towards it from the
left with unit velocity (V = 1). If the two masses are equal then
when they collide, mass M will stop and transfer its momentum
to mass m, which will move to the right with unit velocity. Mass
m will now collide with the wall and return with the same speed
(velocity will have opposite sign) to collide again with mass M .
Now mass m will stop and mass M will move off to negative
infinity. There will have been three collisions in total.

Suppose we repeat the previous scenario with mass M now
100 times that of m. In this case m will again move off towards
the wall, butM will not come to a complete stop – it will continue
moving to the right at a slightly reduced speed. After m bounces
off the wall it will collide withM , slowing it a little more, but still
not stopping it, while itself shooting off towards the wall again.
In fact m will bounce between the wall and M many times before
it has not only slowed M to a stop, but also imparted enough mo-
mentum to get M moving to the left again at a speed greater than
its own. Mass m will undergo 31 collisions before this happens.

Again we repeat the process, but with M now 10 000 (1002)
times the mass of m. Again there will be multiple collisions be-
fore M moves away to negative infinity faster than m. This time
m will undergo 314 collisions in total. Repeat with M 1003

times the mass of m and m will undergo 3141 collisions. If
M is 1004 times the mass of m then m will experience 31 415
collisions. Note the pattern in the number of collisions: 3, 31,
314, 3141, 31 415. These are the digits of π, and the pattern

Conservation of energy:

1

2
MV 2 +
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2
mv2 = E. (1)

Conservation of momentum:

MV +mv = P. (2)

At the wall
v → −v. (3)

E is the total (kinetic) energy of the system and P is the mo-
mentum immediately before and after the two blocks collide (P
is different for each such collision). It is convenient to multiply
equation (1) by 2/M and divide equation (2) by M to get:

Conservation of energy:

V 2 + rv2 =
2E

M
. (4)

Conservation of momentum:

V + rv =
P

M
, (5)

where
r =

m

M
. (6)

Consider the kth collision between the two masses. From
equations (4) and (5) we can see that the pre- and post-collision
velocities are related by:

V 2
k + rv2k = V 2

k−1 + rv2k−1

Vk + rvk = Vk−1 + rvk−1.

From these we obtain:

vk =
(r − 1)vk−1 + 2Vk−1

1 + r
(7)

Vk =
2rvk−1 + (1− r)Vk−1

1 + r
. (8)
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Of course we can simply use equation (3) to update the ve-
locity of mass m when it collides with the wall. Figure 2 shows
some pseudocode that calculates the number of collisions, k.

1: Set a value for r (say, r = 100−1)
2: initialise velocities: v = 0, V = 1
3: initialise collision counter: k = 0
4: while V > v do
5: increment counter k = k + 1
6: store pre-collision velocities vold = v, Vold = V
7: update velocities when M and m collide:

v =
(r − 1)vold + 2Vold

1 + r

V =
2rvold + (1− r)Vold

1 + r

8: if m collides with wall (i.e. if v > 0) then
9: increment counter k = k + 1

10: update velocity v = −v
11: end if
12: end while
13: number of collisions = value of k

Figure 2: Pseudocode to calculate the number, k, of small
mass collisions.

Why on earth does this process enumerate the digits of π? We
tend to think of π in relation to circles. Is there a circle hidden
somewhere here? As it happens, there is! Look more closely at
the conservation of energy, equation (4). We can write this as
V 2 + (

√
rv)2 = 2E/M . Noting that initially V = 1 and v = 0

we have that 2E/M = 1, and if we define a scaled velocity:

vs =
√
rv, (9)

we can write the conservation of energy as:

V 2 + vs2 = 1. (10)

Equation (10) is that of a unit circle of course. By suitable modifi-
cation of the listing in Figure 2 we can obtain the velocities, v and
V , at every collision as well as the number of collisions. Calcu-
lating the corresponding values of vs from equation (9), and then
plotting vs against V , together with a unit circle, we see the col-
lisions in configuration space, as illustrated in Figure 3 (where
r = 100−1, or M = 100m). The collisions are marked with the
red dots, which we can see all lie on the blue unit circle. The col-
lisions between the two masses are represented by the dots on or
below the horizontal axis, those between m and the wall by the
dots above the axis. The solid red lines not only connect the col-
lisions in sequence, starting with the rightmost collision at (1, 0),
but the slanted lines code the conservation of momentum, and the
vertical lines code changes in momentum.

Figure 3: Collisions with M = 100m
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To see how the momentum is coded in Figure 3 we rewrite
momentum equation (5), making use of equation (9), and rear-
range to get:

vs =
P√
rM

− 1√
r
V. (11)

This represents the slanted lines, all of which have slope −1/
√
r.

These intersect the unit circle at the collision points. The mo-
mentum is different for each slanted line of course. It decreases
by the equivalent of the current value of 2vs (its coded value in
Figure 3) at each wall collision.

Well, ok, we can see a circle is involved, but how, exactly, do
the digits of π appear from the collisions? To see this let’s re-plot
the unit circle and the collision dots (this time without the mo-
mentum lines) and add radial lines from the origin to the dots, as
in Figure 4 (the black dot represents a point where the final mo-
mentum line intersects the conservation of energy circle, but it
does not represent a collision because at that point, both masses
have negative velocities, with the large mass having the more neg-
ative velocity, thereby drawing away from the small mass). All
the angles between consecutive radial lines, apart from the angle
of the sector immediately below the black dot, are the same (I will
not prove that here – see [3] for a proof).

Figure 4

To calculate the angle θ, let’s home in on the first sector (i.e.
that involving the first two collisions) as in Figure 5. Prior to the
first we have V = 1 and v = 0 so from equations (7) and (8) we
find the velocities after the first collision to be v = 2/(1+ r) and
V = (1− r)/(1+ r) with vs = 2

√
r/(1+ r) from equation (9).

The length of the straight dotted line between the first two col-
lision points in Figure 5 is now easily found in terms of r from
Pythagoras’ theorem to be

√(
1− (1− r)

(1 + r)

)2

+

(
2
√
r

(1 + r)

)2

or 2
√

r/(1 + r). The angle, θ, is found from sin(θ/2) =

2
√

r/(1 + r)/2 so that:

θ = 2 sin−1

(√
r

1 + r

)
. (12)

How many angles θ (hence, collision sectors) are required to
complete a circle? We set sθ to be 2π, so, using equation (12):

s =
π

sin−1
(√

r/(1 + r)
) . (13)

In general, the value of s from equation (13) will not be an
integer, but we must have an integer number of collisions, hence
we find the number of collisions, n, from n = floor(s).1 For
example, with r = 100−1, equation (13) results in s = 31.52
so the number of collisions, n = 31. With r = 100−2 we get
s = 314.17 so n = 314. With r = 100−3 we find s = 3141.59
so n = 3141, and so on.

Figure 5: First sector

What is so special about the choice of negative powers of 100
for r? Why not choose 99, or 2, or any other number? We can
see why by looking carefully at equation (13). Generally, with
r = 100−N and N > 0, we have

√
r

(1 + r)
≈

√
r = 10−N .

With small values for its argument sin−1 α ≈ α, so equation (13)
becomes s ≈ π/10−N or s ≈ 10Nπ. In other words, in our nor-
mal base ten notation, s is approximately π with the decimal point
shifted to the right by N places.

Interesting alternative explanations of the colliding blocks
phenomenon are given in [4] (a geometric explanation), and in [5]
(a linear algebra explanation).

I guess all of this is cold comfort to those poor souls sliding
about on the icy pavements!

Notes

1. Usually, the floor function is defined so that floor(s) is the
largest integer less than or equal to s. Here, we slightly mod-
ify that to the largest integer strictly less than s. The reason
for this is to ensure that when r = 1, n is 3 not 4.
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