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Introduction

T he first Covid-19 lockdown during March 2020 included
closure of universities for most in-person activities, with
teaching delivered online for the remainder of the aca-

demic year. Over 2.3million students study at over 160 education
providers in the UK. Mass national and international movement at
the beginning of academic terms is often associated with illness,
commonly referred to in the UK as ‘freshers flu’. When universi-
ties reopened their doors in autumn 2020, as Covid-19 cases were
increasing, many universities experienced large outbreaks, which
led to fears of self-isolation and an increased number of cases
spilling over into local communities. As well as isolation being
detrimental to the mental health of students, the sheer number
of isolated students posed logistical problems to the universities,
due to the need for food deliveries and other support.

Before the start of the 2020/2021 academic year, there were
many unknowns, such as the relationship between Covid-19
prevalence in incoming students and large outbreaks, which fac-
tors increased risks in student halls, the impact of university out-
breaks on surrounding communities, and the impact of isolation,
testing and adherence on the progression of Covid-19 in univer-
sity settings.

Despite these uncertainties, decisions had to be taken on the
operation of universities during the pandemic. Mathematical
modelling was a valuable tool in the decision-making process.
This article summarises the research by the Higher Education
working group at the Isaac Newton Institute for Mathematical
Sciences, University of Cambridge, published in [1], CC BY 4.01.

First, we will discuss a retrospective analysis that sought
to understand what occurred during the autumn term of the
2020/2021 academic year, attempting to answer the questions:

• Can the estimated numbers of incoming infectious students
explain the observed outbreaks?

• What factors influence infection risk in student halls?

• How do university outbreaks impact local communities?

Then, we discuss models used to analyse questions associ-
ated with potential future scenarios if students were to return to
university:

• Does adhering to test, trace and isolation rules reduce the
probability of infection?

• Does mass testing of students reduce the probability of an
outbreak?

• If a more transmissible variant were to circulate, would
testing need to be increased?

Additional analysis may be found in the source paper, as well
as a much more rigorous criticism of the assumptions and lim-
itations of the analysis, which, of course, need to be considered
when providing evidence to policymakers! The whole body of
work was presented as evidence to inform government decision-
making when the government road map to lift the lockdown was
announced on 22 February 2021.

Do numbers of incoming infectious students
explain the observed outbreaks?

The universities had many rules to try to prevent transmission;
however, many still experienced large outbreaks. With such a
large number of students moving around the country and the num-
ber of UK cases increasing, were these outbreaks to be expected?

If we define p as the probability that an incoming infection
fails to cause an outbreak, then pn is the probability that n in-
coming infections will fail to cause an outbreak. If n is the initial
number of infectious students, then the probability of an outbreak
is P = 1 − pn. If p = 1, there is no probability of an incoming
infection causing an outbreak. Therefore, the probability of a uni-
versity outbreak is P = 1 − 1n = 0 for all possible values of n.
In contrast, if p = 0, all incoming infections would be expected
to cause a university outbreak, and therefore, the probability of a
university outbreak is P = 1 − 0n = 1 if n is larger than 0 and
P = 1− 00 = 0 if n = 0 (since 00 = 1).

Enright [2] estimated the number of incoming infected stu-
dents for each university using data on the proportion of com-
munities testing positive (prevalence) and data on students’ home
and term-time postcodes. To learn about the size of the observed
outbreaks in university settings, we collected outbreak data from
the University and College Union (UCU) dashboard [3] for 72
universities.

Box 1: Maximum likelihood estimation

Maximum likelihood estimation calculates the
likelihood function (the likelihood of the data given
the model) for a range of values of p. Therefore, it
finds the value of p that best describes the data. For
each university i, we represent the imported num-
ber of cases by ni. We set xi = 1 if a university
experienced an outbreak and xi = 0 if not. The
likelihood of the data for all N universities given p
is then

L(p) =
N∏
i=1

pni(1−xi)

︸ ︷︷ ︸
no outbreak

(1− pni)xi

︸ ︷︷ ︸
outbreak

.

Here, if xi = 0, then (1 − pni)xi = 1, and there-
fore, pni(1−xi)(1−pni)xi = pni , i.e. the probabil-
ity that all ni cases do not lead to an outbreak. If
xi = 1, then pni(1−xi) = 1, and as a consequence,
pni(1−xi)(1− pni)xi = 1− pni .

There is always uncertainty around statistical
estimates because an estimate is based on the sam-
ple of the population analysed. If a different sam-
ple of the population were analysed, the range of
values we expect the estimate to fall into for a given
percentage of samples is called the confidence
interval.
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Table 1: Expected impact of increasing hall capacity and proportion of students sharing a bathroom on the hall SAR (95% confidence
intervals) from the final multivariate logistic regression (from [1]).

Percentage of students without a private bathroom
Hall size 0% 50% 100%

100 0.06 (0.04–0.08) 0.07 (0.06–0.09) 0.09 (0.07–0.11)
200 0.08 (0.07–0.10) 0.10 (0.09–0.12) 0.13 (0.11–0.14)
400 0.16 (0.13–0.19) 0.19 (0.17–0.22) 0.23 (0.20–0.27)

Universities were binned, with bin widths of 10, according to
the estimated number of incoming infectious students. For each
bin, we calculated the fraction of universities that experienced
a large outbreak, which we subjectively defined as 400 or more
reported cases by 19 November 2020. The model estimates fol-
lowed the trend of the observed fraction of universities experienc-
ing an outbreak (Figure 1).

Figure 1: Outbreak probability as a function of expected incom-
ing infections, where p is fitted by maximum likelihood estimation
(from [1]). See Box 1.

Generally, estimates for p were relatively large and close to 1,
indicating that most chains of infection died out without causing
a large outbreak. This could suggest that the universities’ strate-
gies for preventing outbreaks worked quite well. However, if the
sheer number of incoming cases is large (due to the large number
of cases across the UK), more large university outbreaks should
be expected. The value of p not only depends on the transmissi-
bility of the variant and the rules in place at the time, but also on
how well students follow them.

What influences infection risk in student halls?

Many students had to isolate due to Covid-19 infection in halls
of residence. Universities attempted to prevent this by splitting
halls into households, which were intended to function simi-
larly to households in the community. There were restrictions
on socialising beyond household members and requirements for

the entire household to isolate if a member displayed symp-
toms or tested positive. Factors influencing the risk of infection
amongst students in halls at a single university were examined us-
ing multivariate logistic regression (see Box 2). Our analysis was
performed on reported cases, with actual infection levels likely
higher!

We considered an event to be a student in a hall testing posi-
tive for Covid-19 given at least one other student in the hall had
tested positive, referred to as the secondary attack rate (SAR).
The predictors we included in the model were:

• Median household size.

• Proportion of students in medical courses, as a proxy for
higher risk of infection due to attending placements.

• Hall size.

• Proportion of students sharing a bathroom.

Only hall size and proportion of students sharing a bathroom
were significantly associated with SAR. We provide the predicted
SAR for different hall capacities and proportions sharing bath-
rooms in Table 1. The data indicate that students in halls with
all shared bathrooms (final column) are approximately 50% more
likely to become infected than students in halls with all en-suite
rooms (first column). Our results suggest that dividing students
into households was unlikely to reduce infection risk. In contrast,
the model suggested that partially filling halls could significantly
reduce transmission risk, especially if this also reduced shared
spaces.

Box 2: Multivariate logistic regression

Multivariate logistic regression is a statistical
model of the probability of an event (p), given as

p(x1, x2, . . . , xn)

=
1

1 + e−(β0+β1x1+β2x2+...+βnxn)
,

where x1, x2, . . . , xn are predictors and β1, β2,
. . ., βn are the corresponding parameter values of
the impact the predictor has on the probability of
the event. For each predictor, a p-value, indicating
the statistical significance of how well the model
fits the data when it does and does not include the
predictor, is also calculated. If a p-value is less than
0.05, we say it is significant.
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How do university outbreaks impact locals?

Asking this question another way, following a student outbreak,
could spillover signals (more community cases than expected) be
detected? A spillover signal likely depends on:

• The size of the student outbreak.

• The number of cases in the community at the start of the
outbreak.

• The proportion of local students (who attend a university
in the same region as their home address).

To investigate, we decided to examine the temporal patterns of
confirmed cases in each university and local community.

Figure 2: Relationship between student cases and local com-
munity cases, with the proportion (15% to 77%) of local stu-
dents (circle size); community incidence per 1000 at the time
of peak student cases (colour); potential spillover signal above
the dashed line, and no signal below it (from [1]).

We collected data for students from the UCU Covid-19 dash-
board [3]. Collecting relevant data for community cases was
more tricky! Though data were available by age from Pub-
lic Health England, which has since been replaced by the UK
Health Security Agency and the Office for Health Improvement
and Disparities, these data were likely also to include the student
cases. Therefore, as a proxy for community cases, we used the
number of cases for people who were not of the typical student
age (18–24).

We detected diverse levels of potential spillover, shown in Fig-
ure 2. Some of the largest university outbreaks were in areas

with the largest number of community cases (yellow dots on the
right). Larger university outbreaks tend to correlate with a larger
spillover signal (dots in the top right corner). However, this is not
always the case (dots in the lower right corner). Some universi-
ties had large outbreaks but only a small spillover signal could be
detected. Sometimes, there was no spillover signal at all.

This analysis shows how complex the issue is; there is not al-
ways a clear relationship between the size of a university outbreak
and the number of community cases due to spillover! In practice,
the spillover could be from the local community to students, if
the community has a high enough prevalence.

Here, the definition of a spillover assumes that there is a causal
relationship between student and community cases, with no other
factors. Many other factors were likely to influence community
prevalence; for example, children returned to schools at a similar
time as students returned to university.

Does adhering to test, trace and isolation rules
reduce the probability of infection?

To minimise the risk of large outbreaks during the second aca-
demic term, guidance stipulated that all students should be of-
fered a test when they returned to university. This helped to iden-
tify and isolate asymptomatically infected individuals [4]. The
testing regime involved two lateral flow tests, three days apart,
with isolation between tests.

Although there are many different types of model for simulat-
ing disease transmission, to investigate the extent that adherence
to test, trace and isolate measures can minimise the impacts of
outbreaks, we needed a model framework that can capture the in-
dividual nature of the intervention. We, therefore, used a network
model.

Network models consider contact patterns as graphs, where
the nodes represent hosts and the edges represent contacts. Each
contact with an infectious host is associated with a probability of
infection. Figure 3 is a schematic of an example outbreak.

If transmission takes place, each newly infected individual en-
ters a latent period of infection (when they are not yet infectious).
Then, when they are infectious, they either remain asymptomatic
(an asymptomatic case) or transition through the presymptomatic
and symptomatic stages of infection. Asymptomatic testing can
detect both presymptomatic and asymptomatic cases. When in-
dividuals are identified by asymptomatic testing or display symp-
toms and enter isolation, they do not continue to infect others.

At the time we were conducting our analyses, the sensitiv-
ity of lateral flow tests was an area of considerable uncertainty.

Figure 3: Example of a network model for an outbreak.
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During the initial stages of infection, when the virus is proliferat-
ing, it was assumed sensitivity was the same for symptomatic and
asymptomatic individuals. After this, during the clearance stage,
it was assumed the probability of asymptomatic individuals test-
ing positive decayed faster (Figure 4).

Figure 4: Probability of symptomatic and asymptomatic individu-
als having a positive lateral flow test result (from [1]).

We considered a network of 25 000 students, with 7155 on
campus and the remainder off campus. Students were assumed to
have contact with all household members each day. Using data
from a student social contact survey conducted in 2010 [5], stu-
dents were randomly assigned non-household contacts (such as
with their study cohort, organised societies and sports clubs, and
other social contacts). These data were used to build 50 unique
possible networks. Each network was then simulated 20 times, re-
sulting in a total of 1000 simulations. In each simulation, a back-
ground (community) prevalence was sampled from a uniform dis-
tribution, with minimum 0.005 and maximum 0.02, and this was
used to compute a daily probability of infection for off-campus
students. Each simulation was run for the duration of a term (11
weeks). For further details about this model and its limitations,
see [6] for a full description.

The model was used to simulate a baseline scenario (with no
interventions) and intervention scenarios (with no society con-
tacts and on-campus students adhering to the household bubble
rules within halls). Intervention scenarios also considered differ-
ent probabilities of students adhering to testing on return, isola-
tion (10 days for contacts of confirmed cases) and contact testing.

Even when no students were adherent (an adherence prob-
ability of 0), contacts were reduced due to the lack of society
activities and household bubbles within halls, and therefore, the
relative attack rate was reduced compared to the baseline scenario
(Figure 5).

Nevertheless, the analysis shows adherence is crucial in re-
ducing the overall number of cases! Initially, as more students
adhere to the rules, the average time in isolation increases (as ex-
pected). However, the proportion of time in isolation per student
peaks when roughly 70–80% of students adhere, with time in iso-
lation per student being lower if all students adhere. We observe
this effect because the increased isolation due to adherence is out-
weighed by the reduction in the number of cases.

Does mass testing of students reduce risk?

Between November 2020 and January 2021, the Alpha variant
spread across the UK. It was presumed to be more transmissible
than previously widespread variants. This motivated interest in
whether mass testing could control this more transmissible vari-
ant. Would testing regimes that would have worked in the previ-
ous term still be sufficient if students were to return to university?

Asymptomatic testing systems were also used throughout
the term. A similar network model was used to simulate con-
tacts of 15 000 students with household and non-household mem-
bers. Again, infected individuals transitioned through a latent pe-
riod before becoming asymptomatic or presymptomatic and then
symptomatic. In this model, it is was assumed that half of infected
individuals remained asymptotic and that all infectious individu-
als were equally infectious.

As well as a baseline scenario with no testing, we explored
four asymptomatic testing scenarios in which individuals were
tested at random with a probability 1/3, 1/7, 1/10 or 1/14 per
day per person (to simulate testing every 3, 7, 10 or 14 days,
respectively). In all scenarios, it was assumed that when an

Figure 5: Output of simulations for various probabilities of adherence given all students participate in testing when returning to
university. Distributions correspond to: relative attack rate compared to the baseline scenario (left) and time spent in isolation per
student (right). The white markers denote medians and solid black lines span the 25th to 75th percentiles (from [1]).
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Figure 6: Time series of cumulative cases for each testing scenario for the lower-transmissibility variant (left) and the higher-
transmissibility variant (right). Shaded regions show the 95% prediction intervals, and solid lines show mean values (from [1]).

individual became symptomatic they isolated immediately. If an
individual tested positive, then their entire household isolated for
14 days.

Simplifying assumptions included perfect testing (all infected
individuals receive a positive result) and an adherence probabil-
ity of 1. Here, an adherence probability of 1 corresponds to all
individuals with a positive test or symptoms isolating, as well as
their household members. It was also assumed that 50% of non-
household contacts were traced and isolated.

The model was analysed for a lower-transmissibility variant
(intended to simulate the variant circulating in autumn 2020) and
a higher-transmissibility variant, 1.5 times more transmissible.
This was implemented by multiplying the probability of trans-
mission due to a contact with an infectious individual by 1.5.

The model was run for 100 days starting with 100 students
randomly assigned as infectious. The model was simulated for
100 replicates, each run on a newly generated network. Figure 6
shows that more frequent testing leads to less cases overall. The
figure suggests that if each student participated in testing once ev-
ery two weeks then the number of cases would be approximately
halved. Many universities offered testing twice a week (most sim-
ilar to once every three days). In this model, if all students fol-
lowed this advice, the number of cases would be significantly re-
duced compared to students choosing not to test.

Conclusions

These mathematical investigations produced the following find-
ings:

1. High community prevalence leads to many infected incom-
ing students, increasing the probability of large outbreaks.

2. Living in large halls with shared facilities poses a high risk
of infection.

3. There is no clear relationship between student outbreaks
and an increase in local community cases.

4. Adhering to the rules decreases the attack rate.

5. To avoid large outbreaks, universities have to test students
very frequently, especially if there are high-transmissibility
variants.

Epidemiological analyses, such as this, are still ongoing to help
protect and improve the well-being of students and the wider
community!

Notes

1. This research [1] was published by the Royal Society un-
der the terms of the Creative Commons Attribution License
(creativecommons.org/licenses/by/4.0/).
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