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Settling Scores and Gambling on Goals*
Matthew Cotton AMIMA and Brady Metherall AMIMA, University of Oxford

atthew and Brady are struggling to settle a dire dis-
M pute. Having exhausted all other means of resolution,

they are forced to rely on chance and agree to let Lady
Luck lay the hatchet to rest. Yet in today’s cashless society, nei-
ther of them has a coin to toss and so they decide to bet on the
result of a football match.! They cannot simply bet on the score,
since both of them may guess incorrectly, and they cannot bet on
a winner, since the result may be a draw or one team may be a
clear favourite. Instead, they decide to wager on whether there is
an even or odd number of goals scored in the match — the ‘even-
ness’ of the end result. If Matthew bets on even and Brady bets
on odd, who is more likely to win?

Winners evaluate infinite sums

As with all good mathematical models, a useful first step in de-
scribing our system is to abstract away the details. We assume
that goals are scored at a constant rate and that each goal occurs
independently, so that we model goal scoring as a Poisson pro-
cess. The rate at which each team scores is a reflection of their
ability and will likely differ for each team. Since in our model
goals are independent, the overall scoring rate — the rate we care
about — will be the sum of the two teams’ rates and will remain
Poisson.

Therefore, the evenness of the final score is simply the proba-
bility of there being an even or odd number of events in a Poisson
process. If we expect A goals in a match, then the probability of
scoring n goalsis p(n) = e ~ A" /n!, where X is also the variance
of the distribution.

The probability of the game ending with an even number of
goals, peven, iS then the sum of the probabilities of all the even
results, Peven = P(0) + p(2) + p(4) + ..., which we can write as
the infinite sum
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We can compare the expressions to standard series expansions
and spot that the sums are simply the hyperbolic cosine and sine
functions! That is, the probability of an even or odd number of
goals in a game is
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If the teams are so bad that they never score, A = 0, the end
result will always be 0-0, an even number of goals. This is pre-
dicted by (1), since peven(A = 0) = 1. Conversely, when goals
are scored at a high rate, the distribution of p(n) broadens and the
difference p(n) —p(n+1) tends to 0. As more and more goals are
scored, the advantage for the even player vanishes, and in the limit
A — 00, Peven = Podd = 1/2. However, since sinh(z) < cosh(z)
for all «, the smart money always bets on an even number of goals.
It is even better to be an even better.

Just as Matthew and Brady are placing their bets, their office-
mate wants to join the action. Our duelling duo becomes a trio in
trouble, so now we need to add a third player to our betting game!
This is easy to do if we change the win condition from depend-
ing on evenness to depending on the remainder when dividing the
total number of goals scored in the match by three.

Itis easiest to label ourselves players 0, 1 and 2, where player 0
wins if the number of goals scored is congruent to 0 modulo 3
(that is, if 0, 3, 6, etc. goals are scored), player 1 wins if the num-
ber of goals scored is congruent to 1 modulo 3 (1, 4, 7, etc.) and
player 2 wins if the number of goals scored is congruent to 2
modulo 3 (2, 5, 8, etc.). As we saw in the two-player case, we
can sum over all the states in which each player wins to calculate
their overall probability of winning, and so
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More generally, in a game of IV players labelled 0 to N — 1,
the winner is determined by the remainder after dividing the total
number of goals scored by N. Then
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is the probability that player j wins. Unlike in the even vs odd
case, the sums given by (3) are non-standard and cannot be found
in tables. They are less recognisable and require more work than
simply reading off the expression. So our simple strategy to settle
scores for the two-player case is not so easy to find with additional
arguing agents. However, by modelling the time-dependent dy-
namics of the system, we can find p; via a different method.
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Time evolution of the tally

For illustration, let us return to the two-player, even—odd case.
Assuming that goal scoring is a Poisson process, then at every
moment throughout the game, goals are scored at a constant rate
A=\ /tmatch> Where tyacn is the duration of the match. Each time
a goal is scored, the evenness of the score changes, and so we also
switch the current bet winner with rate \. If at some time t, there
iS @ peven (t) chance of there being an even number of goals and a
Podd (t) chance of there being an odd number of goals, then we can
write the differential equations describing the evolution of these
probabilities, namely
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Both (4) and (5) have a term describing the probability flux out of
the current state and into the opposite state and a term describing
the probability flux out of the opposite state and into the current

state.
We can write this coupled system as the matrix equation
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where p is the vector of probabilities and M is the transition ma-
trix. We can find the solution via the matrix exponential to give
p(t) = exp(Mt)p(0), where p(0) is the probability distribution
at the start of the match. Each match starts with an even num-
ber of goals, and so p(0) = (1,0)T. After evaluating the matrix

exponential at ¢ = paecn, We find that
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which gives the same values as in (1) and (2).

With more than two players, each time a goal is scored, the
current winner iteratively cycles through all the players. Updating
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the coupled system for the three-player game, (6) becomes
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The diagonal elements describe the rate out of each probability
state, and the off-diagonal M;; terms describe the rate of transi-
tioning from winner ¢ to winner j, which is non-zero only for the
7 — 1 — j transition.

Notice that each row of M is the same, but shifted one entry to
the right (with wrapping), as illustrated by Figure 1. This special
kind of matrix is called a circulant matrix and has the convenient
property that the eigenvectors are the same for any circulant ma-
trix [1]! Moreover, the eigenvectors are given by the columns of
the Fourier matrix

1 1 1 1
1 w w? w1
1 1 2 4 2(N-1)
F=—|" v © NG
VN : : : :
1 wz\;q W2(N-1) WwN-1)?

where
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is a primitive Nth root of unity. Due to the cyclic nature of our
problem, it is unsurprising that the eigenvectors are related to the
Fourier transform.

Our matrix can be diagonalised as [1]

M = F*DF,

where
D = diag(p),

and * denotes the conjugate transpose. Here, the entries of p are
the eigenvalues of M, given by [1]

Kj = 5\(W(N_l)j - 1),

forj=0,1,...,N — 1.

Figure 1: Each goal scored changes the current winner to cycle through all players. This gives the graph on the left, which is

described by the transition matrix on the right.
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(d) Five players

Figure 2: Probability of each player winning as a function of average number of goals. In the Premier League, an average of 1.19
goals are scored in the first half and 2.66 overall, as shown by the vertical dashed lines.

We may now evaluate the matrix exponential and solve our
system, so that

p(t) = exp(Mt)p(0)
= F* exp(Dt)Fp(0).

A match always starts at score 0-0, with player 0 winning, so
p(0) = (1,0,---,0)T. Notice from (7) that Fp(0), is just a col-
umn vector of 1’s normalised by VN , and so

1
VN
Therefore, we can find the probabilities, and also determine
closed-form expressions for the sums in (3), with a single matrix—

vector multiplication! In the three-player case, at the end of the
match, the probabilities are

p(t) = —=F"exp(ut).
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We show how the likelihood of each player winning depends
on \ in Figure 2 for games with 2-5 players. In the two-player
case, we find that the even player is more likely to win, regard-
less of \. However, the situation is not as clear cut when we

1
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add additional players. In the three-player case, pg < p; for
A > 1.2. However, all players are essentially equally likely to
win for A > 3. As we continue to add additional players, the
behaviour becomes more complex when the goal scoring rate is
low. When the goal scoring rate is high, each player is equally
likely to win. However, the goal scoring rate required for a fair
game increases with the number of players.

Gambling on goals

Having thought about the theory and made our model, it is wise
to check that our strategy provides an advantage when applied
to real-world football results. We found Premier League re-
sults [2] of 10 189 football matches across 26 seasons (1995/96
to 2021/22), with an average of 2.66 goals per match.

We show a histogram of the goals scored in the matches in
Figure 3, and this appears to be approximated well by our Pois-
son prediction with A = 2.66 (the mean goals scored). However,
the advantage for the even player is more pronounced in the data
than in the predictions of our model. In 51.19% of real matches,
an even number of goals were scored, leaving 48.81% with an
odd number of total goals, compared to our model predictions of
50.25% and 49.75%. Possible reasons for this difference include
that the constant rate assumption made in the model may break
down near the end of a match, for example, due to substitutions,
fatigue or tactical changes made by the teams, such as trying to
secure a draw or push for a win.
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Figure 3: Full-time distribution comparing observed and
predicted number of goals.
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Figure 4: Half-time distribution comparing observed and
predicted number of goals.

As a further investigation, we study the distribution of goals
at half-time. The assumptions made are less likely to be affected
during the first half of a match as fewer substitutions are typi-
cally made, players will not be as tired and the pressure of the
full-time whistle is still a distant thought. The dataset [2] also
includes the scores at half-time, with an average of 1.19 goals in
the first half. Comparing the first-half data to the Poisson model,
shown in Figure 4, the frequencies matched up almost exactly.
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The model predicts that 54.66% of matches have an even number
of goals in the first half, compared to the observed frequency of
55.01% of an even number of goals.

We can continue our analysis by considering the full-time
three-player game. From the data, player 0 wins 32.92%, player 1
wins 34.71% and player 2 wins 32.37% of the time. Our model
predicts p = (0.3251,0.3454,0.3295)T. We find a slight ad-
vantage for player 1 in both the data and the model. However,
at full time, the probabilities are fairly uniform. On the other
hand, at the end of the first half, player 0 and player 1 win 39.39%
and 38.32% of the time, with player 2 winning only 22.27% of
the time. Our model closely predicts these probabilities with
p = (0.3915,0.3876,0.2208)", and we can clearly see the dis-
advantage of being player 2 when gambling on goals in the first
half.

In conclusion, evaluating infinite sums can identify the best
strategy when betting with friends on football or other systems
that are governed by Poisson processes. For the two-player game,
Matthew might have made the right move betting on an even num-
ber of goals. However, Brady still has a good chance to win since
the advantage is small. The clever play is to bet on an even num-
ber of goals in the first half. With more than two players, the strat-
egy is more nuanced, as the player most likely to win depends on
A and the number of players. So, the next time you want to settle
a dispute with your friends, consider using the goal parity of a
football match.

Notes

1. This article is intended to illustrate a mathematical analysis.
It is not intended, in any way, to recommend any form of bet-
ting. If you are worried about how gambling makes you or
someone else feel, see www.begambleaware.org.
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